src/HOL/HoareParallel/Gar_Coll.thy
changeset 13020 791e3b4c4039
child 13022 b115b305612f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HoareParallel/Gar_Coll.thy	Tue Mar 05 17:11:25 2002 +0100
@@ -0,0 +1,880 @@
+
+header {* \section{The Single Mutator Case} *}
+
+theory Gar_Coll = Graph + OG_Syntax:
+
+text {* Declaration of variables: *}
+
+record gar_coll_state =
+  M :: nodes
+  E :: edges
+  bc :: "nat set"
+  obc :: "nat set"
+  Ma :: nodes
+  ind :: nat 
+  k :: nat
+  z :: bool
+
+subsection {* The Mutator *}
+
+text {* The mutator first redirects an arbitrary edge @{text "R"} from
+an arbitrary accessible node towards an arbitrary accessible node
+@{text "T"}.  It then colors the new target @{text "T"} black. 
+
+We declare the arbitrarily selected node and edge as constants:*}
+
+consts R :: nat  T :: nat
+
+text {* \noindent The following predicate states, given a list of
+nodes @{text "m"} and a list of edges @{text "e"}, the conditions
+under which the selected edge @{text "R"} and node @{text "T"} are
+valid: *}
+
+constdefs
+  Mut_init :: "gar_coll_state \<Rightarrow> bool"
+  "Mut_init \<equiv> \<guillemotleft> T \<in> Reach \<acute>E \<and> R < length \<acute>E \<and> T < length \<acute>M \<guillemotright>"
+
+text {* \noindent For the mutator we
+consider two modules, one for each action.  An auxiliary variable
+@{text "\<acute>z"} is set to false if the mutator has already redirected an
+edge but has not yet colored the new target.   *}
+
+constdefs
+  Redirect_Edge :: "gar_coll_state ann_com"
+  "Redirect_Edge \<equiv> .{\<acute>Mut_init \<and> \<acute>z}. \<langle>\<acute>E:=\<acute>E[R:=(fst(\<acute>E!R), T)],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
+
+  Color_Target :: "gar_coll_state ann_com"
+  "Color_Target \<equiv> .{\<acute>Mut_init \<and> \<not>\<acute>z}. \<langle>\<acute>M:=\<acute>M[T:=Black],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
+
+  Mutator :: "gar_coll_state ann_com"
+  "Mutator \<equiv>
+  .{\<acute>Mut_init \<and> \<acute>z}. 
+  WHILE True INV .{\<acute>Mut_init \<and> \<acute>z}. 
+  DO  Redirect_Edge ;; Color_Target  OD"
+
+subsubsection {* Correctness of the mutator *}
+
+lemmas mutator_defs = Mut_init_def Redirect_Edge_def Color_Target_def
+
+lemma Redirect_Edge: 
+  "\<turnstile> Redirect_Edge pre(Color_Target)"
+apply (unfold mutator_defs)
+apply annhoare
+apply(simp_all)
+apply(force elim:Graph2)
+done
+
+lemma Color_Target:
+  "\<turnstile> Color_Target .{\<acute>Mut_init \<and> \<acute>z}."
+apply (unfold mutator_defs)
+apply annhoare
+apply(simp_all)
+done
+
+lemma Mutator: 
+ "\<turnstile> Mutator .{False}."
+apply(unfold Mutator_def)
+apply annhoare
+apply(simp_all add:Redirect_Edge Color_Target)
+apply(simp add:mutator_defs Redirect_Edge_def)
+done
+
+subsection {* The Collector *}
+
+text {* \noindent A constant @{text "M_init"} is used to give @{text "\<acute>Ma"} a
+suitable first value, defined as a list of nodes where only the @{text
+"Roots"} are black. *}
+
+consts  M_init :: nodes
+
+constdefs
+  Proper_M_init :: "gar_coll_state \<Rightarrow> bool"
+  "Proper_M_init \<equiv>  \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>"
+ 
+  Proper :: "gar_coll_state \<Rightarrow> bool"
+  "Proper \<equiv> \<guillemotleft> Proper_Roots \<acute>M \<and> Proper_Edges(\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<guillemotright>"
+
+  Safe :: "gar_coll_state \<Rightarrow> bool"
+  "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>"
+
+lemmas collector_defs = Proper_M_init_def Proper_def Safe_def
+
+subsubsection {* Blackening the roots *}
+
+constdefs
+  Blacken_Roots :: " gar_coll_state ann_com"
+  "Blacken_Roots \<equiv> 
+  .{\<acute>Proper}.
+  \<acute>ind:=0;;
+  .{\<acute>Proper \<and> \<acute>ind=0}.
+  WHILE \<acute>ind<length \<acute>M 
+   INV .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
+  DO .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+   IF \<acute>ind\<in>Roots THEN 
+   .{\<acute>Proper \<and> (\<forall>i<\<acute>ind. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}. 
+    \<acute>M:=\<acute>M[\<acute>ind:=Black] FI;;
+   .{\<acute>Proper \<and> (\<forall>i<\<acute>ind+1. i \<in> Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
+    \<acute>ind:=\<acute>ind+1 
+  OD"
+
+lemma Blacken_Roots: 
+ "\<turnstile> Blacken_Roots .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M}."
+apply (unfold Blacken_Roots_def)
+apply annhoare
+apply(simp_all add:collector_defs Graph_defs)
+apply safe
+apply(simp_all add:nth_list_update)
+   apply (erule less_SucE)
+    apply simp+
+  apply (erule less_SucE)
+   apply simp+
+ apply(drule le_imp_less_or_eq)
+ apply force
+apply force
+done
+
+subsubsection {* Propagating black *}
+
+constdefs
+  PBInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+  "PBInv \<equiv> \<guillemotleft> \<lambda>ind. \<acute>obc < Blacks \<acute>M \<or> (\<forall>i <ind. \<not>BtoW (\<acute>E!i, \<acute>M) \<or>
+   (\<not>\<acute>z \<and> i=R \<and> (snd(\<acute>E!R)) = T \<and> (\<exists>r. ind \<le> r \<and> r < length \<acute>E \<and> BtoW(\<acute>E!r,\<acute>M))))\<guillemotright>"
+
+constdefs  
+  Propagate_Black_aux :: "gar_coll_state ann_com"
+  "Propagate_Black_aux \<equiv>
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+  \<acute>ind:=0;;
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0}. 
+  WHILE \<acute>ind<length \<acute>E 
+   INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+         \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E}.
+  DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+       \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}. 
+   IF \<acute>M!(fst (\<acute>E!\<acute>ind)) = Black THEN 
+    .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+       \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black}.
+     \<acute>M:=\<acute>M[snd(\<acute>E!\<acute>ind):=Black];;
+    .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+       \<and> \<acute>PBInv (\<acute>ind + 1) \<and> \<acute>ind<length \<acute>E}.
+     \<acute>ind:=\<acute>ind+1
+   FI
+  OD"
+
+lemma Propagate_Black_aux: 
+  "\<turnstile>  Propagate_Black_aux
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+    \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}."
+apply (unfold Propagate_Black_aux_def  PBInv_def collector_defs)
+apply annhoare
+apply(simp_all add:Graph6 Graph7 Graph8 Graph12)
+      apply force
+     apply force
+    apply force
+--{* 4 subgoals left *}
+apply clarify
+apply(simp add:Proper_Edges_def Proper_Roots_def Graph6 Graph7 Graph8 Graph12)
+apply (erule disjE)
+ apply(rule disjI1)
+ apply(erule Graph13)
+ apply force
+apply (case_tac "M x ! snd (E x ! ind x)=Black")
+ apply (simp add: Graph10 BtoW_def)
+ apply (rule disjI2)
+ apply clarify
+ apply (erule less_SucE)
+  apply (erule_tac x=i in allE , erule (1) notE impE)
+  apply simp
+  apply clarify
+  apply (drule le_imp_less_or_eq)
+  apply (erule disjE)
+   apply (subgoal_tac "Suc (ind x)\<le>r")
+    apply fast
+   apply arith
+  apply fast
+ apply fast
+apply(rule disjI1)
+apply(erule subset_psubset_trans)
+apply(erule Graph11)
+apply fast
+--{* 3 subgoals left *}
+apply force
+apply force
+--{* last *}
+apply clarify
+apply simp
+apply(subgoal_tac "ind x = length (E x)")
+ apply (rotate_tac -1)
+ apply simp
+ apply(drule Graph1)
+   apply simp
+  apply clarify  
+ apply(erule allE, erule impE, assumption)
+  apply force
+ apply force
+apply arith
+done
+
+subsubsection {* Refining propagating black *}
+
+constdefs
+  Auxk :: "gar_coll_state \<Rightarrow> bool"
+  "Auxk \<equiv> \<guillemotleft>\<acute>k<length \<acute>M \<and> (\<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> 
+          \<acute>obc<Blacks \<acute>M \<or> (\<not>\<acute>z \<and> \<acute>ind=R \<and> snd(\<acute>E!R)=T  
+          \<and> (\<exists>r. \<acute>ind<r \<and> r<length \<acute>E \<and> BtoW(\<acute>E!r, \<acute>M))))\<guillemotright>"
+
+constdefs  
+  Propagate_Black :: " gar_coll_state ann_com"
+  "Propagate_Black \<equiv>
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+  \<acute>ind:=0;;
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>ind=0}.
+  WHILE \<acute>ind<length \<acute>E 
+   INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+         \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>E}.
+  DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+       \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}. 
+   IF (\<acute>M!(fst (\<acute>E!\<acute>ind)))=Black THEN 
+    .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+      \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black}.
+     \<acute>k:=(snd(\<acute>E!\<acute>ind));;
+    .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+      \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black 
+      \<and> \<acute>Auxk}.
+     \<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],, \<acute>ind:=\<acute>ind+1\<rangle>
+   ELSE .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+          \<and> \<acute>PBInv \<acute>ind \<and> \<acute>ind<length \<acute>E}. 
+         \<langle>IF (\<acute>M!(fst (\<acute>E!\<acute>ind)))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> 
+   FI
+  OD"
+
+lemma Propagate_Black: 
+  "\<turnstile>  Propagate_Black
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+    \<and> ( \<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}."
+apply (unfold Propagate_Black_def  PBInv_def Auxk_def collector_defs)
+apply annhoare
+apply(simp_all add:Graph6 Graph7 Graph8 Graph12)
+       apply force
+      apply force
+     apply force
+--{* 5 subgoals left *}
+apply clarify
+apply(simp add:BtoW_def Proper_Edges_def)
+--{* 4 subgoals left *}
+apply clarify
+apply(simp add:Proper_Edges_def Graph6 Graph7 Graph8 Graph12)
+apply (erule disjE)
+ apply (rule disjI1)
+ apply (erule psubset_subset_trans)
+ apply (erule Graph9)
+apply (case_tac "M x!k x=Black")
+ apply (case_tac "M x ! snd (E x ! ind x)=Black")
+  apply (simp add: Graph10 BtoW_def)
+  apply (rule disjI2)
+  apply clarify
+  apply (erule less_SucE)
+   apply (erule_tac x=i in allE , erule (1) notE impE)
+   apply simp
+   apply clarify
+   apply (drule le_imp_less_or_eq)
+   apply (erule disjE)
+    apply (subgoal_tac "Suc (ind x)\<le>r")
+     apply fast
+    apply arith
+   apply fast
+  apply fast
+ apply (simp add: Graph10 BtoW_def)
+ apply (erule disjE)
+  apply (erule disjI1)
+ apply clarify
+ apply (erule less_SucE)
+  apply force
+ apply simp
+ apply (subgoal_tac "Suc R\<le>r")
+  apply fast
+ apply arith
+apply(rule disjI1)
+apply(erule subset_psubset_trans)
+apply(erule Graph11)
+apply fast
+--{* 3 subgoals left *}
+apply force
+--{* 2 subgoals left *}
+apply clarify
+apply(simp add:Proper_Edges_def Graph6 Graph7 Graph8 Graph12)
+apply (erule disjE)
+ apply fast
+apply clarify
+apply (erule less_SucE)
+ apply (erule_tac x=i in allE , erule (1) notE impE)
+ apply simp
+ apply clarify
+ apply (drule le_imp_less_or_eq)
+ apply (erule disjE)
+  apply (subgoal_tac "Suc (ind x)\<le>r")
+   apply fast
+  apply arith
+ apply (simp add: BtoW_def)
+apply (simp add: BtoW_def)
+--{* last *}
+apply clarify
+apply simp
+apply(subgoal_tac "ind x = length (E x)")
+ apply (rotate_tac -1)
+ apply simp
+ apply(drule Graph1)
+   apply simp
+  apply clarify  
+ apply(erule allE, erule impE, assumption)
+  apply force
+ apply force
+apply arith
+done
+
+subsubsection {* Counting black nodes *}
+
+constdefs
+  CountInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+  "CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
+
+constdefs
+  Count :: " gar_coll_state ann_com"
+  "Count \<equiv>
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+    \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+    \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>bc={}}.
+  \<acute>ind:=0;;
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+    \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+   \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>bc={} 
+   \<and> \<acute>ind=0}.
+   WHILE \<acute>ind<length \<acute>M 
+     INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+           \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+           \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind
+           \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind\<le>length \<acute>M}.
+   DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+         \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+         \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind 
+         \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M}. 
+       IF \<acute>M!\<acute>ind=Black 
+          THEN .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+                 \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+                 \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv \<acute>ind
+                 \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}.
+          \<acute>bc:=insert \<acute>ind \<acute>bc
+       FI;;
+      .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+        \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+        \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>CountInv (\<acute>ind+1)
+        \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe) \<and> \<acute>ind<length \<acute>M}.
+      \<acute>ind:=\<acute>ind+1
+   OD"
+
+lemma Count: 
+  "\<turnstile> Count 
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+   \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> length \<acute>Ma=length \<acute>M
+   \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}."
+apply(unfold Count_def)
+apply annhoare
+apply(simp_all add:CountInv_def Graph6 Graph7 Graph8 Graph12 Blacks_def collector_defs)
+      apply force
+     apply force
+    apply force
+   apply clarify
+   apply simp
+   apply(fast elim:less_SucE)
+  apply clarify
+  apply simp
+  apply(fast elim:less_SucE)
+ apply force
+apply force
+done
+
+subsubsection {* Appending garbage nodes to the free list *}
+
+consts Append_to_free :: "nat \<times> edges \<Rightarrow> edges"
+
+axioms
+  Append_to_free0: "length (Append_to_free (i, e)) = length e"
+  Append_to_free1: "Proper_Edges (m, e) 
+                   \<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))"
+  Append_to_free2: "i \<notin> Reach e 
+     \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)"
+
+constdefs
+  AppendInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+  "AppendInv \<equiv> \<guillemotleft>\<lambda>ind. \<forall>i<length \<acute>M. ind\<le>i \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black\<guillemotright>"
+
+constdefs
+  Append :: " gar_coll_state ann_com"
+   "Append \<equiv>
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
+  \<acute>ind:=0;;
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
+    WHILE \<acute>ind<length \<acute>M 
+      INV .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
+    DO .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
+       IF \<acute>M!\<acute>ind=Black THEN 
+          .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. 
+          \<acute>M:=\<acute>M[\<acute>ind:=White] 
+       ELSE .{\<acute>Proper \<and> \<acute>AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}.
+              \<acute>E:=Append_to_free(\<acute>ind,\<acute>E)
+       FI;;
+     .{\<acute>Proper \<and> \<acute>AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}. 
+       \<acute>ind:=\<acute>ind+1
+    OD"
+
+lemma Append: 
+  "\<turnstile> Append .{\<acute>Proper}."
+apply(unfold Append_def AppendInv_def)
+apply annhoare
+apply(simp_all add:collector_defs Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)
+       apply(force simp:Blacks_def nth_list_update)
+      apply force
+     apply force
+    apply(force simp add:Graph_defs)
+   apply force
+  apply clarify
+  apply simp
+  apply(rule conjI)
+   apply (erule Append_to_free1)
+  apply clarify
+  apply (drule_tac n = "i" in Append_to_free2)
+  apply force
+ apply force
+apply force
+done
+
+subsubsection {* Correctness of the Collector *}
+
+constdefs 
+  Collector :: " gar_coll_state ann_com"
+  "Collector \<equiv>
+.{\<acute>Proper}.  
+ WHILE True INV .{\<acute>Proper}. 
+ DO  
+  Blacken_Roots;; 
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M}.  
+   \<acute>obc:={};; 
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}. 
+   \<acute>bc:=Roots;; 
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}. 
+   \<acute>Ma:=M_init;;  
+  .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>Ma=M_init}. 
+   WHILE \<acute>obc\<noteq>\<acute>bc  
+     INV .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
+           \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+           \<and> length \<acute>Ma=length \<acute>M \<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}. 
+   DO .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
+       \<acute>obc:=\<acute>bc;;
+       Propagate_Black;; 
+      .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
+        \<and> (\<acute>obc < Blacks \<acute>M \<or> \<acute>Safe)}. 
+       \<acute>Ma:=\<acute>M;;
+      .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma 
+        \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> length \<acute>Ma=length \<acute>M 
+        \<and> ( \<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)}.
+       \<acute>bc:={};;
+       Count 
+   OD;; 
+  Append  
+ OD"
+
+lemma Collector: 
+  "\<turnstile> Collector .{False}."
+apply(unfold Collector_def)
+apply annhoare
+apply(simp_all add: Blacken_Roots Propagate_Black Count Append)
+apply(simp_all add:Blacken_Roots_def Propagate_Black_def Count_def Append_def collector_defs)
+   apply (force simp add: Proper_Roots_def)
+  apply force
+ apply force
+apply clarify
+apply (erule disjE)
+apply(simp add:psubsetI)
+ apply(force dest:subset_antisym)
+apply force
+done
+
+subsection {* Interference Freedom *}
+
+lemmas modules = Redirect_Edge_def Color_Target_def Blacken_Roots_def 
+                 Propagate_Black_def Count_def Append_def
+lemmas Invariants = PBInv_def Auxk_def CountInv_def AppendInv_def
+lemmas abbrev = collector_defs mutator_defs Invariants
+
+lemma interfree_Blacken_Roots_Redirect_Edge: 
+ "interfree_aux (Some Blacken_Roots, {}, Some Redirect_Edge)"
+apply (unfold modules)
+apply interfree_aux
+apply safe
+apply (simp_all add:Graph6 Graph12 abbrev)
+done
+
+lemma interfree_Redirect_Edge_Blacken_Roots: 
+  "interfree_aux (Some Redirect_Edge, {}, Some Blacken_Roots)"
+apply (unfold modules)
+apply interfree_aux
+apply safe
+apply(simp add:abbrev)+
+done
+
+lemma interfree_Blacken_Roots_Color_Target: 
+  "interfree_aux (Some Blacken_Roots, {}, Some Color_Target)"
+apply (unfold modules)
+apply interfree_aux
+apply safe
+apply(simp_all add:Graph7 Graph8 nth_list_update abbrev)
+done
+
+lemma interfree_Color_Target_Blacken_Roots: 
+  "interfree_aux (Some Color_Target, {}, Some Blacken_Roots)"
+apply (unfold modules )
+apply interfree_aux
+apply safe
+apply(simp add:abbrev)+
+done
+
+lemma interfree_Propagate_Black_Redirect_Edge: 
+  "interfree_aux (Some Propagate_Black, {}, Some Redirect_Edge)"
+apply (unfold modules )
+apply interfree_aux
+--{* 11 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(erule conjE)+
+apply(erule disjE, erule disjI1, rule disjI2, rule allI, (rule impI)+, case_tac "R=i", rule conjI, erule sym)
+ apply(erule Graph4) 
+   apply(simp)+
+  apply (simp add:BtoW_def)
+ apply (simp add:BtoW_def)
+apply(rule conjI)
+ apply (force simp add:BtoW_def)
+apply(erule Graph4)
+   apply simp+
+  apply (simp add:BtoW_def)
+  apply force
+ apply (simp add:BtoW_def)
+ apply force
+apply (simp add:BtoW_def)
+apply force
+--{* 7 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(erule conjE)+
+apply(erule disjE, erule disjI1, rule disjI2, rule allI, (rule impI)+, case_tac "R=i", rule conjI, erule sym)
+ apply(erule Graph4) 
+   apply(simp)+
+  apply (simp add:BtoW_def)
+ apply (simp add:BtoW_def)
+apply(rule conjI)
+ apply (force simp add:BtoW_def)
+apply(erule Graph4)
+   apply simp+
+  apply (simp add:BtoW_def)
+  apply force
+ apply (simp add:BtoW_def)
+ apply force
+apply (simp add:BtoW_def)
+apply force
+--{* 6 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(erule conjE)+
+apply(rule conjI)
+ apply(erule disjE, erule disjI1, rule disjI2, rule allI, (rule impI)+, case_tac "R=i", rule conjI, erule sym)
+  apply(erule Graph4) 
+    apply(simp)+
+   apply (simp add:BtoW_def)
+  apply (simp add:BtoW_def)
+ apply(rule conjI)
+  apply (force simp add:BtoW_def)
+ apply(erule Graph4)
+    apply simp+
+   apply (simp add:BtoW_def)
+   apply force
+  apply (simp add:BtoW_def)
+  apply force
+ apply (simp add:BtoW_def)
+ apply force
+apply(simp add:BtoW_def nth_list_update) 
+apply force
+--{* 5 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+--{* 4 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(rule conjI)
+ apply(erule disjE, erule disjI1, rule disjI2, rule allI, (rule impI)+, case_tac "R=i", rule conjI, erule sym)
+  apply(erule Graph4) 
+    apply(simp)+
+   apply (simp add:BtoW_def)
+  apply (simp add:BtoW_def)
+ apply(rule conjI)
+  apply (force simp add:BtoW_def)
+ apply(erule Graph4)
+    apply simp+
+   apply (simp add:BtoW_def)
+   apply force
+  apply (simp add:BtoW_def)
+  apply force
+ apply (simp add:BtoW_def)
+ apply force
+apply(rule conjI)
+ apply(simp add:nth_list_update)
+ apply force
+apply(rule impI, rule impI, erule disjE, erule disjI1, case_tac "R = (ind x)" ,case_tac "M x ! T = Black")
+  apply(force simp add:BtoW_def)
+ apply(case_tac "M x !snd (E x ! ind x)=Black")
+  apply(rule disjI2)
+  apply simp
+  apply (erule Graph5)
+  apply simp+
+ apply(force simp add:BtoW_def)
+apply(force simp add:BtoW_def)
+--{* 3 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+--{* 2 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12)
+apply(erule disjE, erule disjI1, rule disjI2, rule allI, (rule impI)+, case_tac "R=i", rule conjI, erule sym)
+ apply clarify
+ apply(erule Graph4) 
+   apply(simp)+
+  apply (simp add:BtoW_def)
+ apply (simp add:BtoW_def)
+apply(rule conjI)
+ apply (force simp add:BtoW_def)
+apply(erule Graph4)
+   apply simp+
+  apply (simp add:BtoW_def)
+  apply force
+ apply (simp add:BtoW_def)
+ apply force
+apply (simp add:BtoW_def)
+apply force
+--{* 1 subgoals left *}
+apply(simp add:abbrev)
+done
+
+lemma interfree_Redirect_Edge_Propagate_Black: 
+  "interfree_aux (Some Redirect_Edge, {}, Some Propagate_Black)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev)+
+done
+
+lemma interfree_Propagate_Black_Color_Target: 
+  "interfree_aux (Some Propagate_Black, {}, Some Color_Target)"
+apply (unfold modules )
+apply interfree_aux
+--{* 11 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)+
+apply(erule conjE)+
+apply(erule disjE,rule disjI1,erule psubset_subset_trans,erule Graph9, 
+      case_tac "M x!T=Black", rule disjI2,rotate_tac -1, simp add: Graph10, clarify,
+      erule allE, erule impE, assumption, erule impE, assumption, 
+      simp add:BtoW_def, rule disjI1, erule subset_psubset_trans, erule Graph11, force) 
+--{* 7 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+apply(erule conjE)+
+apply(erule disjE,rule disjI1,erule psubset_subset_trans,erule Graph9, 
+      case_tac "M x!T=Black", rule disjI2,rotate_tac -1, simp add: Graph10, clarify,
+      erule allE, erule impE, assumption, erule impE, assumption, 
+      simp add:BtoW_def, rule disjI1, erule subset_psubset_trans, erule Graph11, force) 
+--{* 6 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+apply clarify
+apply (rule conjI)
+ apply(erule disjE,rule disjI1,erule psubset_subset_trans,erule Graph9, 
+      case_tac "M x!T=Black", rule disjI2,rotate_tac -1, simp add: Graph10, clarify,
+      erule allE, erule impE, assumption, erule impE, assumption, 
+      simp add:BtoW_def, rule disjI1, erule subset_psubset_trans, erule Graph11, force) 
+apply(simp add:nth_list_update)
+--{* 5 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+--{* 4 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+apply (rule conjI)
+ apply(erule disjE,rule disjI1,erule psubset_subset_trans,erule Graph9, 
+      case_tac "M x!T=Black", rule disjI2,rotate_tac -1, simp add: Graph10, clarify,
+      erule allE, erule impE, assumption, erule impE, assumption, 
+      simp add:BtoW_def, rule disjI1, erule subset_psubset_trans, erule Graph11, force) 
+apply(rule conjI)
+apply(simp add:nth_list_update)
+apply(rule impI,rule impI, case_tac "M x!T=Black",rotate_tac -1, force simp add: BtoW_def Graph10, 
+      erule subset_psubset_trans, erule Graph11, force)
+--{* 3 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+--{* 2 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+apply(erule disjE,rule disjI1,erule psubset_subset_trans,erule Graph9, 
+      case_tac "M x!T=Black", rule disjI2,rotate_tac -1, simp add: Graph10, clarify,
+      erule allE, erule impE, assumption, erule impE, assumption, 
+      simp add:BtoW_def, rule disjI1, erule subset_psubset_trans, erule Graph11, force) 
+--{* 3 subgoals left *}
+apply(simp add:abbrev)
+done
+
+lemma interfree_Color_Target_Propagate_Black: 
+  "interfree_aux (Some Color_Target, {}, Some Propagate_Black)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev)+
+done
+
+lemma interfree_Count_Redirect_Edge: 
+  "interfree_aux (Some Count, {}, Some Redirect_Edge)"
+apply (unfold modules)
+apply interfree_aux
+--{* 9 subgoals left *}
+apply(simp_all add:abbrev Graph6 Graph12)
+--{* 6 subgoals left *}
+apply(clarify, simp add:abbrev Graph6 Graph12,
+      erule disjE,erule disjI1,rule disjI2,rule subset_trans, erule Graph3,force,force)+
+done
+
+lemma interfree_Redirect_Edge_Count: 
+  "interfree_aux (Some Redirect_Edge, {}, Some Count)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify,simp add:abbrev)+
+apply(simp add:abbrev)
+done
+
+lemma interfree_Count_Color_Target: 
+  "interfree_aux (Some Count, {}, Some Color_Target)"
+apply (unfold modules )
+apply interfree_aux
+--{* 9 subgoals left *}
+apply(simp_all add:abbrev Graph7 Graph8 Graph12)
+--{* 6 subgoals left *}
+apply(clarify,simp add:abbrev Graph7 Graph8 Graph12,
+      erule disjE, erule disjI1, rule disjI2,erule subset_trans, erule Graph9)+
+--{* 2 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
+apply(rule conjI)
+ apply(erule disjE, erule disjI1, rule disjI2,erule subset_trans, erule Graph9) 
+apply(simp add:nth_list_update)
+--{* 1 subgoals left *}
+apply(clarify, simp add:abbrev Graph7 Graph8 Graph12,
+      erule disjE, erule disjI1, rule disjI2,erule subset_trans, erule Graph9)
+done
+
+lemma interfree_Color_Target_Count: 
+  "interfree_aux (Some Color_Target, {}, Some Count)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev)+
+apply(simp add:abbrev)
+done
+
+lemma interfree_Append_Redirect_Edge: 
+  "interfree_aux (Some Append, {}, Some Redirect_Edge)"
+apply (unfold modules )
+apply interfree_aux
+apply( simp_all add:abbrev Graph6 Append_to_free0 Append_to_free1 Graph12)
+apply(clarify, simp add:abbrev Graph6 Append_to_free0 Append_to_free1 Graph12, force dest:Graph3)+
+done
+
+lemma interfree_Redirect_Edge_Append: 
+  "interfree_aux (Some Redirect_Edge, {}, Some Append)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev Append_to_free0)+
+apply (force simp add: Append_to_free2)
+apply(clarify, simp add:abbrev Append_to_free0)+
+done
+
+lemma interfree_Append_Color_Target: 
+  "interfree_aux (Some Append, {}, Some Color_Target)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12 nth_list_update)+
+apply(simp add:abbrev Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12 nth_list_update)
+done
+
+lemma interfree_Color_Target_Append: 
+  "interfree_aux (Some Color_Target, {}, Some Append)"
+apply (unfold modules )
+apply interfree_aux
+apply(clarify, simp add:abbrev Append_to_free0)+
+apply (force simp add: Append_to_free2)
+apply(clarify,simp add:abbrev Append_to_free0)+
+done
+
+lemmas collector_mutator_interfree = 
+ interfree_Blacken_Roots_Redirect_Edge interfree_Blacken_Roots_Color_Target 
+ interfree_Propagate_Black_Redirect_Edge interfree_Propagate_Black_Color_Target  
+ interfree_Count_Redirect_Edge interfree_Count_Color_Target 
+ interfree_Append_Redirect_Edge interfree_Append_Color_Target 
+ interfree_Redirect_Edge_Blacken_Roots interfree_Color_Target_Blacken_Roots 
+ interfree_Redirect_Edge_Propagate_Black interfree_Color_Target_Propagate_Black  
+ interfree_Redirect_Edge_Count interfree_Color_Target_Count 
+ interfree_Redirect_Edge_Append interfree_Color_Target_Append
+
+subsubsection {* Interference freedom Collector-Mutator *}
+
+lemma interfree_Collector_Mutator:
+ "interfree_aux (Some Collector, {}, Some Mutator)"
+apply(unfold Collector_def Mutator_def)
+apply interfree_aux
+apply(simp_all add:collector_mutator_interfree)
+apply(unfold modules collector_defs mutator_defs)
+apply(tactic  {* TRYALL (interfree_aux_tac) *})
+--{* 32 subgoals left *}
+apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)
+--{* 20 subgoals left *}
+apply(tactic{* TRYALL Clarify_tac *})
+apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)
+apply(tactic {* TRYALL (etac disjE) *})
+apply simp_all
+apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac subset_trans,etac (thm "Graph3"),Force_tac, assume_tac]) *})
+apply(tactic {* TRYALL(EVERY'[rtac disjI2,etac subset_trans,rtac (thm "Graph9"),Force_tac]) *})
+apply(tactic {* TRYALL(EVERY'[rtac disjI1,etac psubset_subset_trans,rtac (thm "Graph9"),Force_tac]) *})
+done
+
+subsubsection {* Interference freedom Mutator-Collector *}
+
+lemma interfree_Mutator_Collector:
+ "interfree_aux (Some Mutator, {}, Some Collector)"
+apply(unfold Collector_def Mutator_def)
+apply interfree_aux
+apply(simp_all add:collector_mutator_interfree)
+apply(unfold modules collector_defs mutator_defs)
+apply(tactic  {* TRYALL (interfree_aux_tac) *})
+--{* 64 subgoals left *}
+apply(simp_all add:nth_list_update Invariants Append_to_free0)+
+apply(tactic{* TRYALL Clarify_tac *})
+--{* 4 subgoals left *}
+apply force
+apply(simp add:Append_to_free2)
+apply force
+apply(simp add:Append_to_free2)
+done
+
+subsubsection {* The Garbage Collection algorithm *}
+
+text {* In total there are 289 verification conditions.  *}
+
+lemma Gar_Coll: 
+  "\<parallel>- .{\<acute>Proper \<and> \<acute>Mut_init \<and> \<acute>z}.  
+  COBEGIN  
+   Collector
+  .{False}.
+ \<parallel>  
+   Mutator
+  .{False}. 
+ COEND 
+  .{False}."
+apply oghoare
+apply(force simp add: Mutator_def Collector_def modules)
+apply(rule Collector)
+apply(rule Mutator)
+apply(simp add:interfree_Collector_Mutator)
+apply(simp add:interfree_Mutator_Collector)
+apply force
+done
+
+end