src/HOL/Tools/SMT/z3_proof_methods.ML
changeset 40662 798aad2229c0
child 40663 e080c9e68752
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT/z3_proof_methods.ML	Mon Nov 22 15:45:42 2010 +0100
@@ -0,0 +1,137 @@
+(*  Title:      HOL/Tools/SMT/z3_proof_methods.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Proof methods for Z3 proof reconstruction.
+*)
+
+signature Z3_PROOF_METHODS =
+sig
+  val prove_injectivity: Proof.context -> cterm -> thm
+end
+
+structure Z3_Proof_Methods: Z3_PROOF_METHODS =
+struct
+
+structure U = SMT_Utils
+
+
+fun apply tac st =
+  (case Seq.pull (tac 1 st) of
+    NONE => raise THM ("tactic failed", 1, [st])
+  | SOME (st', _) => st')
+
+
+
+(* injectivity *)
+
+local
+
+val B = @{typ bool}
+fun mk_univ T = Const (@{const_name top}, T --> B)
+fun mk_inj_on T U =
+  Const (@{const_name inj_on}, (T --> U) --> (T --> B) --> B)
+fun mk_inv_into T U =
+  Const (@{const_name inv_into}, [T --> B, T --> U, U] ---> T)
+
+fun mk_inv_of ctxt ct =
+  let
+    val T = #T (Thm.rep_cterm ct)
+    val dT = Term.domain_type T
+    val inv = U.certify ctxt (mk_inv_into dT (Term.range_type T))
+    val univ = U.certify ctxt (mk_univ dT)
+  in Thm.mk_binop inv univ ct end
+
+fun mk_inj_prop ctxt ct =
+  let
+    val T = #T (Thm.rep_cterm ct)
+    val dT = Term.domain_type T
+    val inj = U.certify ctxt (mk_inj_on dT (Term.range_type T))
+    val univ = U.certify ctxt (mk_univ dT)
+  in U.mk_cprop (Thm.mk_binop inj ct univ) end
+
+
+val disjE = @{lemma "~P | Q ==> P ==> Q" by fast}
+
+fun prove_inj_prop ctxt hdef lhs =
+  let
+    val (ct, ctxt') = U.dest_all_cabs (Thm.rhs_of hdef) ctxt
+    val rule = disjE OF [Object_Logic.rulify (Thm.assume lhs)]
+  in
+    Goal.init (mk_inj_prop ctxt' (Thm.dest_arg ct))
+    |> apply (Tactic.rtac @{thm injI})
+    |> apply (Tactic.solve_tac [rule, rule RS @{thm sym}])
+    |> Goal.norm_result o Goal.finish ctxt'
+    |> singleton (Variable.export ctxt' ctxt)
+  end
+
+fun prove_rhs ctxt hdef lhs rhs =
+  Goal.init rhs
+  |> apply (CONVERSION (Conv.top_sweep_conv (K (Conv.rewr_conv hdef)) ctxt))
+  |> apply (REPEAT_ALL_NEW (Tactic.match_tac @{thms allI}))
+  |> apply (Tactic.rtac (@{thm inv_f_f} OF [prove_inj_prop ctxt hdef lhs]))
+  |> Goal.norm_result o Goal.finish ctxt
+
+
+fun expand thm ct =
+  let
+    val cpat = Thm.dest_arg (Thm.rhs_of thm)
+    val (cl, cr) = Thm.dest_binop (Thm.dest_arg (Thm.dest_arg1 ct))
+    val thm1 = Thm.instantiate (Thm.match (cpat, cl)) thm
+    val thm2 = Thm.instantiate (Thm.match (cpat, cr)) thm
+  in Conv.arg_conv (Conv.binop_conv (Conv.rewrs_conv [thm1, thm2])) ct end
+
+fun prove_lhs ctxt rhs lhs =
+  let
+    val eq = Thm.symmetric (mk_meta_eq (Object_Logic.rulify (Thm.assume rhs)))
+  in
+    Goal.init lhs
+    |> apply (CONVERSION (U.prop_conv (U.binders_conv (K (expand eq)) ctxt)))
+    |> apply (Simplifier.simp_tac HOL_ss)
+    |> Goal.finish ctxt
+  end
+
+
+fun mk_hdef ctxt rhs =
+  let
+    val (ct, ctxt') = U.dest_all_cbinders (U.dest_cprop rhs) ctxt
+    val (cl, cv) = Thm.dest_binop ct
+    val (cg, (cargs, cf)) = Drule.strip_comb cl ||> split_last
+    val cu = fold_rev Thm.cabs cargs (mk_inv_of ctxt' (Thm.cabs cv cf))
+  in Thm.assume (U.mk_cequals cg cu) end
+
+fun prove_inj_eq ctxt ct =
+  let
+    val (lhs, rhs) = pairself U.mk_cprop (Thm.dest_binop (U.dest_cprop ct))
+    val hdef = mk_hdef ctxt rhs
+    val lhs_thm = Thm.implies_intr rhs (prove_lhs ctxt rhs lhs)
+    val rhs_thm = Thm.implies_intr lhs (prove_rhs ctxt hdef lhs rhs)
+  in lhs_thm COMP (rhs_thm COMP @{thm iffI}) end
+
+
+val swap_eq_thm = mk_meta_eq @{thm eq_commute}
+val swap_disj_thm = mk_meta_eq @{thm disj_commute}
+
+fun swap_conv dest eq =
+  U.if_true_conv ((op <) o pairself Term.size_of_term o dest)
+    (Conv.rewr_conv eq)
+
+val swap_eq_conv = swap_conv HOLogic.dest_eq swap_eq_thm
+val swap_disj_conv = swap_conv U.dest_disj swap_disj_thm
+
+fun norm_conv ctxt =
+  swap_eq_conv then_conv
+  Conv.arg1_conv (U.binders_conv (K swap_disj_conv) ctxt) then_conv
+  Conv.arg_conv (U.binders_conv (K swap_eq_conv) ctxt)
+
+in
+
+fun prove_injectivity ctxt ct =
+  ct
+  |> Goal.init
+  |> apply (CONVERSION (U.prop_conv (norm_conv ctxt)))
+  |> apply (CSUBGOAL (uncurry (Tactic.rtac o prove_inj_eq ctxt)))
+  |> Goal.norm_result o Goal.finish ctxt
+
+end
+
+end