changeset 22624 | 7a6c8ed516ab |
parent 22390 | 378f34b1e380 |
child 22853 | 7f000a385606 |
--- a/src/HOL/Power.thy Tue Apr 10 18:09:58 2007 +0200 +++ b/src/HOL/Power.thy Tue Apr 10 21:50:08 2007 +0200 @@ -291,8 +291,7 @@ lemma power_le_imp_le_base: assumes le: "a ^ Suc n \<le> b ^ Suc n" - and xnonneg: "(0::'a::{ordered_semidom,recpower}) \<le> a" - and ynonneg: "0 \<le> b" + and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b" shows "a \<le> b" proof (rule ccontr) assume "~ a \<le> b"