src/HOL/Boolean_Algebra.thy
changeset 74123 7c5842b06114
parent 74122 7d3e818fe21f
child 74124 d36e40f3c171
child 74125 94c27a7a0d39
--- a/src/HOL/Boolean_Algebra.thy	Thu Aug 05 07:12:49 2021 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,296 +0,0 @@
-(*  Title:      HOL/Boolean_Algebra.thy
-    Author:     Brian Huffman
-*)
-
-section \<open>Abstract boolean Algebras\<close>
-
-theory Boolean_Algebra
-  imports Lattices
-begin
-
-locale boolean_algebra = conj: abel_semigroup "(\<^bold>\<sqinter>)" + disj: abel_semigroup "(\<^bold>\<squnion>)"
-  for conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "\<^bold>\<sqinter>" 70)
-    and disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "\<^bold>\<squnion>" 65) +
-  fixes compl :: "'a \<Rightarrow> 'a"  ("\<^bold>- _" [81] 80)
-    and zero :: "'a"  ("\<^bold>0")
-    and one  :: "'a"  ("\<^bold>1")
-  assumes conj_disj_distrib: "x \<^bold>\<sqinter> (y \<^bold>\<squnion> z) = (x \<^bold>\<sqinter> y) \<^bold>\<squnion> (x \<^bold>\<sqinter> z)"
-    and disj_conj_distrib: "x \<^bold>\<squnion> (y \<^bold>\<sqinter> z) = (x \<^bold>\<squnion> y) \<^bold>\<sqinter> (x \<^bold>\<squnion> z)"
-    and conj_one_right: "x \<^bold>\<sqinter> \<^bold>1 = x"
-    and disj_zero_right: "x \<^bold>\<squnion> \<^bold>0 = x"
-    and conj_cancel_right [simp]: "x \<^bold>\<sqinter> \<^bold>- x = \<^bold>0"
-    and disj_cancel_right [simp]: "x \<^bold>\<squnion> \<^bold>- x = \<^bold>1"
-begin
-
-sublocale conj: semilattice_neutr "(\<^bold>\<sqinter>)" "\<^bold>1"
-proof
-  show "x \<^bold>\<sqinter> \<^bold>1 = x" for x
-    by (fact conj_one_right)
-  show "x \<^bold>\<sqinter> x = x" for x
-  proof -
-    have "x \<^bold>\<sqinter> x = (x \<^bold>\<sqinter> x) \<^bold>\<squnion> \<^bold>0"
-      by (simp add: disj_zero_right)
-    also have "\<dots> = (x \<^bold>\<sqinter> x) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- x)"
-      by simp
-    also have "\<dots> = x \<^bold>\<sqinter> (x \<^bold>\<squnion> \<^bold>- x)"
-      by (simp only: conj_disj_distrib)
-    also have "\<dots> = x \<^bold>\<sqinter> \<^bold>1"
-      by simp
-    also have "\<dots> = x"
-      by (simp add: conj_one_right)
-    finally show ?thesis .
-  qed
-qed
-
-sublocale disj: semilattice_neutr "(\<^bold>\<squnion>)" "\<^bold>0"
-proof
-  show "x \<^bold>\<squnion> \<^bold>0 = x" for x
-    by (fact disj_zero_right)
-  show "x \<^bold>\<squnion> x = x" for x
-  proof -
-    have "x \<^bold>\<squnion> x = (x \<^bold>\<squnion> x) \<^bold>\<sqinter> \<^bold>1"
-      by simp
-    also have "\<dots> = (x \<^bold>\<squnion> x) \<^bold>\<sqinter> (x \<^bold>\<squnion> \<^bold>- x)"
-      by simp
-    also have "\<dots> = x \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- x)"
-      by (simp only: disj_conj_distrib)
-    also have "\<dots> = x \<^bold>\<squnion> \<^bold>0"
-      by simp
-    also have "\<dots> = x"
-      by (simp add: disj_zero_right)
-    finally show ?thesis .
-  qed
-qed
-
-
-subsection \<open>Complement\<close>
-
-lemma complement_unique:
-  assumes 1: "a \<^bold>\<sqinter> x = \<^bold>0"
-  assumes 2: "a \<^bold>\<squnion> x = \<^bold>1"
-  assumes 3: "a \<^bold>\<sqinter> y = \<^bold>0"
-  assumes 4: "a \<^bold>\<squnion> y = \<^bold>1"
-  shows "x = y"
-proof -
-  from 1 3 have "(a \<^bold>\<sqinter> x) \<^bold>\<squnion> (x \<^bold>\<sqinter> y) = (a \<^bold>\<sqinter> y) \<^bold>\<squnion> (x \<^bold>\<sqinter> y)"
-    by simp
-  then have "(x \<^bold>\<sqinter> a) \<^bold>\<squnion> (x \<^bold>\<sqinter> y) = (y \<^bold>\<sqinter> a) \<^bold>\<squnion> (y \<^bold>\<sqinter> x)"
-    by (simp add: ac_simps)
-  then have "x \<^bold>\<sqinter> (a \<^bold>\<squnion> y) = y \<^bold>\<sqinter> (a \<^bold>\<squnion> x)"
-    by (simp add: conj_disj_distrib)
-  with 2 4 have "x \<^bold>\<sqinter> \<^bold>1 = y \<^bold>\<sqinter> \<^bold>1"
-    by simp
-  then show "x = y"
-    by simp
-qed
-
-lemma compl_unique: "x \<^bold>\<sqinter> y = \<^bold>0 \<Longrightarrow> x \<^bold>\<squnion> y = \<^bold>1 \<Longrightarrow> \<^bold>- x = y"
-  by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
-
-lemma double_compl [simp]: "\<^bold>- (\<^bold>- x) = x"
-proof (rule compl_unique)
-  show "\<^bold>- x \<^bold>\<sqinter> x = \<^bold>0"
-    by (simp only: conj_cancel_right conj.commute)
-  show "\<^bold>- x \<^bold>\<squnion> x = \<^bold>1"
-    by (simp only: disj_cancel_right disj.commute)
-qed
-
-lemma compl_eq_compl_iff [simp]: 
-  \<open>\<^bold>- x = \<^bold>- y \<longleftrightarrow> x = y\<close>  (is \<open>?P \<longleftrightarrow> ?Q\<close>)
-proof
-  assume \<open>?Q\<close>
-  then show ?P by simp
-next
-  assume \<open>?P\<close>
-  then have \<open>\<^bold>- (\<^bold>- x) = \<^bold>- (\<^bold>- y)\<close>
-    by simp
-  then show ?Q
-    by simp
-qed
-
-
-subsection \<open>Conjunction\<close>
-
-lemma conj_zero_right [simp]: "x \<^bold>\<sqinter> \<^bold>0 = \<^bold>0"
-  using conj.left_idem conj_cancel_right by fastforce
-
-lemma compl_one [simp]: "\<^bold>- \<^bold>1 = \<^bold>0"
-  by (rule compl_unique [OF conj_zero_right disj_zero_right])
-
-lemma conj_zero_left [simp]: "\<^bold>0 \<^bold>\<sqinter> x = \<^bold>0"
-  by (subst conj.commute) (rule conj_zero_right)
-
-lemma conj_cancel_left [simp]: "\<^bold>- x \<^bold>\<sqinter> x = \<^bold>0"
-  by (subst conj.commute) (rule conj_cancel_right)
-
-lemma conj_disj_distrib2: "(y \<^bold>\<squnion> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<^bold>\<squnion> (z \<^bold>\<sqinter> x)"
-  by (simp only: conj.commute conj_disj_distrib)
-
-lemmas conj_disj_distribs = conj_disj_distrib conj_disj_distrib2
-
-lemma conj_assoc: "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> z = x \<^bold>\<sqinter> (y \<^bold>\<sqinter> z)"
-  by (fact ac_simps)
-
-lemma conj_commute: "x \<^bold>\<sqinter> y = y \<^bold>\<sqinter> x"
-  by (fact ac_simps)
-
-lemmas conj_left_commute = conj.left_commute
-lemmas conj_ac = conj.assoc conj.commute conj.left_commute
-
-lemma conj_one_left: "\<^bold>1 \<^bold>\<sqinter> x = x"
-  by (fact conj.left_neutral)
-
-lemma conj_left_absorb: "x \<^bold>\<sqinter> (x \<^bold>\<sqinter> y) = x \<^bold>\<sqinter> y"
-  by (fact conj.left_idem)
-
-lemma conj_absorb: "x \<^bold>\<sqinter> x = x"
-  by (fact conj.idem)
-
-
-subsection \<open>Disjunction\<close>
-
-interpretation dual: boolean_algebra "(\<^bold>\<squnion>)" "(\<^bold>\<sqinter>)" compl \<open>\<^bold>1\<close> \<open>\<^bold>0\<close>
-  apply standard
-       apply (rule disj_conj_distrib)
-      apply (rule conj_disj_distrib)
-     apply simp_all
-  done
-
-lemma compl_zero [simp]: "\<^bold>- \<^bold>0 = \<^bold>1"
-  by (fact dual.compl_one)
-
-lemma disj_one_right [simp]: "x \<^bold>\<squnion> \<^bold>1 = \<^bold>1"
-  by (fact dual.conj_zero_right)
-
-lemma disj_one_left [simp]: "\<^bold>1 \<^bold>\<squnion> x = \<^bold>1"
-  by (fact dual.conj_zero_left)
-
-lemma disj_cancel_left [simp]: "\<^bold>- x \<^bold>\<squnion> x = \<^bold>1"
-  by (rule dual.conj_cancel_left)
-
-lemma disj_conj_distrib2: "(y \<^bold>\<sqinter> z) \<^bold>\<squnion> x = (y \<^bold>\<squnion> x) \<^bold>\<sqinter> (z \<^bold>\<squnion> x)"
-  by (rule dual.conj_disj_distrib2)
-
-lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2
-
-lemma disj_assoc: "(x \<^bold>\<squnion> y) \<^bold>\<squnion> z = x \<^bold>\<squnion> (y \<^bold>\<squnion> z)"
-  by (fact ac_simps)
-
-lemma disj_commute: "x \<^bold>\<squnion> y = y \<^bold>\<squnion> x"
-  by (fact ac_simps)
-
-lemmas disj_left_commute = disj.left_commute
-
-lemmas disj_ac = disj.assoc disj.commute disj.left_commute
-
-lemma disj_zero_left: "\<^bold>0 \<^bold>\<squnion> x = x"
-  by (fact disj.left_neutral)
-
-lemma disj_left_absorb: "x \<^bold>\<squnion> (x \<^bold>\<squnion> y) = x \<^bold>\<squnion> y"
-  by (fact disj.left_idem)
-
-lemma disj_absorb: "x \<^bold>\<squnion> x = x"
-  by (fact disj.idem)
-
-
-subsection \<open>De Morgan's Laws\<close>
-
-lemma de_Morgan_conj [simp]: "\<^bold>- (x \<^bold>\<sqinter> y) = \<^bold>- x \<^bold>\<squnion> \<^bold>- y"
-proof (rule compl_unique)
-  have "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = ((x \<^bold>\<sqinter> y) \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> ((x \<^bold>\<sqinter> y) \<^bold>\<sqinter> \<^bold>- y)"
-    by (rule conj_disj_distrib)
-  also have "\<dots> = (y \<^bold>\<sqinter> (x \<^bold>\<sqinter> \<^bold>- x)) \<^bold>\<squnion> (x \<^bold>\<sqinter> (y \<^bold>\<sqinter> \<^bold>- y))"
-    by (simp only: conj_ac)
-  finally show "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = \<^bold>0"
-    by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
-next
-  have "(x \<^bold>\<sqinter> y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = (x \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y)) \<^bold>\<sqinter> (y \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y))"
-    by (rule disj_conj_distrib2)
-  also have "\<dots> = (\<^bold>- y \<^bold>\<squnion> (x \<^bold>\<squnion> \<^bold>- x)) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> (y \<^bold>\<squnion> \<^bold>- y))"
-    by (simp only: disj_ac)
-  finally show "(x \<^bold>\<sqinter> y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = \<^bold>1"
-    by (simp only: disj_cancel_right disj_one_right conj_one_right)
-qed
-
-lemma de_Morgan_disj [simp]: "\<^bold>- (x \<^bold>\<squnion> y) = \<^bold>- x \<^bold>\<sqinter> \<^bold>- y"
-  using dual.boolean_algebra_axioms by (rule boolean_algebra.de_Morgan_conj)
-
-
-subsection \<open>Symmetric Difference\<close>
-
-definition xor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "\<^bold>\<ominus>" 65)
-  where "x \<^bold>\<ominus> y = (x \<^bold>\<sqinter> \<^bold>- y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> y)"
-
-sublocale xor: comm_monoid xor \<open>\<^bold>0\<close>
-proof
-  fix x y z :: 'a
-  let ?t = "(x \<^bold>\<sqinter> y \<^bold>\<sqinter> z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z)"
-  have "?t \<^bold>\<squnion> (z \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (z \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- y) = ?t \<^bold>\<squnion> (x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- y) \<^bold>\<squnion> (x \<^bold>\<sqinter> z \<^bold>\<sqinter> \<^bold>- z)"
-    by (simp only: conj_cancel_right conj_zero_right)
-  then show "(x \<^bold>\<ominus> y) \<^bold>\<ominus> z = x \<^bold>\<ominus> (y \<^bold>\<ominus> z)"
-    by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
-      (simp only: conj_disj_distribs conj_ac disj_ac)
-  show "x \<^bold>\<ominus> y = y \<^bold>\<ominus> x"
-    by (simp only: xor_def conj_commute disj_commute)
-  show "x \<^bold>\<ominus> \<^bold>0 = x"
-    by (simp add: xor_def)
-qed
-
-lemmas xor_assoc = xor.assoc
-lemmas xor_commute = xor.commute
-lemmas xor_left_commute = xor.left_commute
-
-lemmas xor_ac = xor.assoc xor.commute xor.left_commute
-
-lemma xor_def2: "x \<^bold>\<ominus> y = (x \<^bold>\<squnion> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y)"
-  using conj.commute conj_disj_distrib2 disj.commute xor_def by auto
-
-lemma xor_zero_right: "x \<^bold>\<ominus> \<^bold>0 = x"
-  by (fact xor.comm_neutral)
-
-lemma xor_zero_left: "\<^bold>0 \<^bold>\<ominus> x = x"
-  by (fact xor.left_neutral)
-
-lemma xor_one_right [simp]: "x \<^bold>\<ominus> \<^bold>1 = \<^bold>- x"
-  by (simp only: xor_def compl_one conj_zero_right conj_one_right disj_zero_left)
-
-lemma xor_one_left [simp]: "\<^bold>1 \<^bold>\<ominus> x = \<^bold>- x"
-  by (subst xor_commute) (rule xor_one_right)
-
-lemma xor_self [simp]: "x \<^bold>\<ominus> x = \<^bold>0"
-  by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
-
-lemma xor_left_self [simp]: "x \<^bold>\<ominus> (x \<^bold>\<ominus> y) = y"
-  by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
-
-lemma xor_compl_left [simp]: "\<^bold>- x \<^bold>\<ominus> y = \<^bold>- (x \<^bold>\<ominus> y)"
-  by (simp add: ac_simps flip: xor_one_left)
-
-lemma xor_compl_right [simp]: "x \<^bold>\<ominus> \<^bold>- y = \<^bold>- (x \<^bold>\<ominus> y)"
-  using xor_commute xor_compl_left by auto
-
-lemma xor_cancel_right: "x \<^bold>\<ominus> \<^bold>- x = \<^bold>1"
-  by (simp only: xor_compl_right xor_self compl_zero)
-
-lemma xor_cancel_left: "\<^bold>- x \<^bold>\<ominus> x = \<^bold>1"
-  by (simp only: xor_compl_left xor_self compl_zero)
-
-lemma conj_xor_distrib: "x \<^bold>\<sqinter> (y \<^bold>\<ominus> z) = (x \<^bold>\<sqinter> y) \<^bold>\<ominus> (x \<^bold>\<sqinter> z)"
-proof -
-  have *: "(x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z) =
-        (y \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (z \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z)"
-    by (simp only: conj_cancel_right conj_zero_right disj_zero_left)
-  then show "x \<^bold>\<sqinter> (y \<^bold>\<ominus> z) = (x \<^bold>\<sqinter> y) \<^bold>\<ominus> (x \<^bold>\<sqinter> z)"
-    by (simp (no_asm_use) only:
-        xor_def de_Morgan_disj de_Morgan_conj double_compl
-        conj_disj_distribs conj_ac disj_ac)
-qed
-
-lemma conj_xor_distrib2: "(y \<^bold>\<ominus> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<^bold>\<ominus> (z \<^bold>\<sqinter> x)"
-  by (simp add: conj.commute conj_xor_distrib)
-
-lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2
-
-end
-
-end