src/HOL/Tools/arith_data.ML
changeset 30496 7cdcc9dd95cb
parent 29302 eb782d1dc07c
child 30518 07b45c1aa788
--- a/src/HOL/Tools/arith_data.ML	Thu Mar 12 18:01:25 2009 +0100
+++ b/src/HOL/Tools/arith_data.ML	Thu Mar 12 18:01:26 2009 +0100
@@ -1,155 +1,39 @@
 (*  Title:      HOL/arith_data.ML
     Author:     Markus Wenzel, Stefan Berghofer, and Tobias Nipkow
 
-Basic arithmetic proof tools.
+Common arithmetic proof auxiliary.
 *)
 
 signature ARITH_DATA =
 sig
-  val prove_conv: tactic -> (simpset -> tactic) -> simpset -> term * term -> thm
+  val prove_conv_nohyps: tactic list -> Proof.context -> term * term -> thm option
+  val prove_conv: tactic list -> Proof.context -> thm list -> term * term -> thm option
+  val prove_conv2: tactic -> (simpset -> tactic) -> simpset -> term * term -> thm
   val simp_all_tac: thm list -> simpset -> tactic
-
-  val mk_sum: term list -> term
-  val mk_norm_sum: term list -> term
-  val dest_sum: term -> term list
-
-  val nat_cancel_sums_add: simproc list
-  val nat_cancel_sums: simproc list
-  val setup: Context.generic -> Context.generic
+  val prep_simproc: string * string list * (theory -> simpset -> term -> thm option)
+    -> simproc
 end;
 
-structure ArithData: ARITH_DATA =
+structure Arith_Data: ARITH_DATA =
 struct
 
-(** generic proof tools **)
+fun prove_conv_nohyps tacs ctxt (t, u) =
+  if t aconv u then NONE
+  else let val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
+  in SOME (Goal.prove ctxt [] [] eq (K (EVERY tacs))) end;
 
-(* prove conversions *)
+fun prove_conv tacs ctxt (_: thm list) = prove_conv_nohyps tacs ctxt;
 
-fun prove_conv expand_tac norm_tac ss tu =  (* FIXME avoid standard *)
+fun prove_conv2 expand_tac norm_tac ss tu = (*FIXME avoid standard*)
   mk_meta_eq (standard (Goal.prove (Simplifier.the_context ss) [] []
       (HOLogic.mk_Trueprop (HOLogic.mk_eq tu))
     (K (EVERY [expand_tac, norm_tac ss]))));
 
-(* rewriting *)
-
 fun simp_all_tac rules =
   let val ss0 = HOL_ss addsimps rules
   in fn ss => ALLGOALS (simp_tac (Simplifier.inherit_context ss ss0)) end;
 
-
-(** abstract syntax of structure nat: 0, Suc, + **)
-
-local
-
-val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
-val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
-
-in
-
-fun mk_sum [] = HOLogic.zero
-  | mk_sum [t] = t
-  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
-
-(*normal form of sums: Suc (... (Suc (a + (b + ...))))*)
-fun mk_norm_sum ts =
-  let val (ones, sums) = List.partition (equal HOLogic.Suc_zero) ts in
-    funpow (length ones) HOLogic.mk_Suc (mk_sum sums)
-  end;
-
-
-fun dest_sum tm =
-  if HOLogic.is_zero tm then []
-  else
-    (case try HOLogic.dest_Suc tm of
-      SOME t => HOLogic.Suc_zero :: dest_sum t
-    | NONE =>
-        (case try dest_plus tm of
-          SOME (t, u) => dest_sum t @ dest_sum u
-        | NONE => [tm]));
+fun prep_simproc (name, pats, proc) = (*FIXME avoid the_context*)
+  Simplifier.simproc (the_context ()) name pats proc;
 
 end;
-
-
-(** cancel common summands **)
-
-structure Sum =
-struct
-  val mk_sum = mk_norm_sum;
-  val dest_sum = dest_sum;
-  val prove_conv = prove_conv;
-  val norm_tac1 = simp_all_tac [@{thm "add_Suc"}, @{thm "add_Suc_right"},
-    @{thm "add_0"}, @{thm "add_0_right"}];
-  val norm_tac2 = simp_all_tac @{thms add_ac};
-  fun norm_tac ss = norm_tac1 ss THEN norm_tac2 ss;
-end;
-
-fun gen_uncancel_tac rule ct =
-  rtac (instantiate' [] [NONE, SOME ct] (rule RS @{thm subst_equals})) 1;
-
-
-(* nat eq *)
-
-structure EqCancelSums = CancelSumsFun
-(struct
-  open Sum;
-  val mk_bal = HOLogic.mk_eq;
-  val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT;
-  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel"};
-end);
-
-
-(* nat less *)
-
-structure LessCancelSums = CancelSumsFun
-(struct
-  open Sum;
-  val mk_bal = HOLogic.mk_binrel @{const_name HOL.less};
-  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT;
-  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_less"};
-end);
-
-
-(* nat le *)
-
-structure LeCancelSums = CancelSumsFun
-(struct
-  open Sum;
-  val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq};
-  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT;
-  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_le"};
-end);
-
-
-(* nat diff *)
-
-structure DiffCancelSums = CancelSumsFun
-(struct
-  open Sum;
-  val mk_bal = HOLogic.mk_binop @{const_name HOL.minus};
-  val dest_bal = HOLogic.dest_bin @{const_name HOL.minus} HOLogic.natT;
-  val uncancel_tac = gen_uncancel_tac @{thm "diff_cancel"};
-end);
-
-
-(* prepare nat_cancel simprocs *)
-
-val nat_cancel_sums_add =
-  [Simplifier.simproc (the_context ()) "nateq_cancel_sums"
-     ["(l::nat) + m = n", "(l::nat) = m + n", "Suc m = n", "m = Suc n"]
-     (K EqCancelSums.proc),
-   Simplifier.simproc (the_context ()) "natless_cancel_sums"
-     ["(l::nat) + m < n", "(l::nat) < m + n", "Suc m < n", "m < Suc n"]
-     (K LessCancelSums.proc),
-   Simplifier.simproc (the_context ()) "natle_cancel_sums"
-     ["(l::nat) + m <= n", "(l::nat) <= m + n", "Suc m <= n", "m <= Suc n"]
-     (K LeCancelSums.proc)];
-
-val nat_cancel_sums = nat_cancel_sums_add @
-  [Simplifier.simproc (the_context ()) "natdiff_cancel_sums"
-    ["((l::nat) + m) - n", "(l::nat) - (m + n)", "Suc m - n", "m - Suc n"]
-    (K DiffCancelSums.proc)];
-
-val setup =
-  Simplifier.map_ss (fn ss => ss addsimprocs nat_cancel_sums);
-
-end;