src/HOL/IMP/Abs_Int_ITP/ACom_ITP.thy
changeset 49095 7df19036392e
child 50986 c54ea7f5418f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Abs_Int_ITP/ACom_ITP.thy	Mon Sep 03 15:41:06 2012 +0200
@@ -0,0 +1,128 @@
+(* Author: Tobias Nipkow *)
+
+theory ACom_ITP
+imports "../Com"
+begin
+
+(* is there a better place? *)
+definition "show_state xs s = [(x,s x). x \<leftarrow> xs]"
+
+subsection "Annotated Commands"
+
+datatype 'a acom =
+  SKIP 'a                           ("SKIP {_}" 61) |
+  Assign vname aexp 'a              ("(_ ::= _/ {_})" [1000, 61, 0] 61) |
+  Seq "('a acom)" "('a acom)"       ("_;//_"  [60, 61] 60) |
+  If bexp "('a acom)" "('a acom)" 'a
+    ("(IF _/ THEN _/ ELSE _//{_})"  [0, 0, 61, 0] 61) |
+  While 'a bexp "('a acom)" 'a
+    ("({_}//WHILE _/ DO (_)//{_})"  [0, 0, 61, 0] 61)
+
+fun post :: "'a acom \<Rightarrow>'a" where
+"post (SKIP {P}) = P" |
+"post (x ::= e {P}) = P" |
+"post (c1; c2) = post c2" |
+"post (IF b THEN c1 ELSE c2 {P}) = P" |
+"post ({Inv} WHILE b DO c {P}) = P"
+
+fun strip :: "'a acom \<Rightarrow> com" where
+"strip (SKIP {P}) = com.SKIP" |
+"strip (x ::= e {P}) = (x ::= e)" |
+"strip (c1;c2) = (strip c1; strip c2)" |
+"strip (IF b THEN c1 ELSE c2 {P}) = (IF b THEN strip c1 ELSE strip c2)" |
+"strip ({Inv} WHILE b DO c {P}) = (WHILE b DO strip c)"
+
+fun anno :: "'a \<Rightarrow> com \<Rightarrow> 'a acom" where
+"anno a com.SKIP = SKIP {a}" |
+"anno a (x ::= e) = (x ::= e {a})" |
+"anno a (c1;c2) = (anno a c1; anno a c2)" |
+"anno a (IF b THEN c1 ELSE c2) =
+  (IF b THEN anno a c1 ELSE anno a c2 {a})" |
+"anno a (WHILE b DO c) =
+  ({a} WHILE b DO anno a c {a})"
+
+fun annos :: "'a acom \<Rightarrow> 'a list" where
+"annos (SKIP {a}) = [a]" |
+"annos (x::=e {a}) = [a]" |
+"annos (C1;C2) = annos C1 @ annos C2" |
+"annos (IF b THEN C1 ELSE C2 {a}) = a #  annos C1 @ annos C2" |
+"annos ({i} WHILE b DO C {a}) = i # a # annos C"
+
+fun map_acom :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a acom \<Rightarrow> 'b acom" where
+"map_acom f (SKIP {P}) = SKIP {f P}" |
+"map_acom f (x ::= e {P}) = (x ::= e {f P})" |
+"map_acom f (c1;c2) = (map_acom f c1; map_acom f c2)" |
+"map_acom f (IF b THEN c1 ELSE c2 {P}) =
+  (IF b THEN map_acom f c1 ELSE map_acom f c2 {f P})" |
+"map_acom f ({Inv} WHILE b DO c {P}) =
+  ({f Inv} WHILE b DO map_acom f c {f P})"
+
+
+lemma post_map_acom[simp]: "post(map_acom f c) = f(post c)"
+by (induction c) simp_all
+
+lemma strip_acom[simp]: "strip (map_acom f c) = strip c"
+by (induction c) auto
+
+lemma map_acom_SKIP:
+ "map_acom f c = SKIP {S'} \<longleftrightarrow> (\<exists>S. c = SKIP {S} \<and> S' = f S)"
+by (cases c) auto
+
+lemma map_acom_Assign:
+ "map_acom f c = x ::= e {S'} \<longleftrightarrow> (\<exists>S. c = x::=e {S} \<and> S' = f S)"
+by (cases c) auto
+
+lemma map_acom_Seq:
+ "map_acom f c = c1';c2' \<longleftrightarrow>
+ (\<exists>c1 c2. c = c1;c2 \<and> map_acom f c1 = c1' \<and> map_acom f c2 = c2')"
+by (cases c) auto
+
+lemma map_acom_If:
+ "map_acom f c = IF b THEN c1' ELSE c2' {S'} \<longleftrightarrow>
+ (\<exists>S c1 c2. c = IF b THEN c1 ELSE c2 {S} \<and> map_acom f c1 = c1' \<and> map_acom f c2 = c2' \<and> S' = f S)"
+by (cases c) auto
+
+lemma map_acom_While:
+ "map_acom f w = {I'} WHILE b DO c' {P'} \<longleftrightarrow>
+ (\<exists>I P c. w = {I} WHILE b DO c {P} \<and> map_acom f c = c' \<and> I' = f I \<and> P' = f P)"
+by (cases w) auto
+
+
+lemma strip_anno[simp]: "strip (anno a c) = c"
+by(induct c) simp_all
+
+lemma strip_eq_SKIP:
+  "strip c = com.SKIP \<longleftrightarrow> (EX P. c = SKIP {P})"
+by (cases c) simp_all
+
+lemma strip_eq_Assign:
+  "strip c = x::=e \<longleftrightarrow> (EX P. c = x::=e {P})"
+by (cases c) simp_all
+
+lemma strip_eq_Seq:
+  "strip c = c1;c2 \<longleftrightarrow> (EX d1 d2. c = d1;d2 & strip d1 = c1 & strip d2 = c2)"
+by (cases c) simp_all
+
+lemma strip_eq_If:
+  "strip c = IF b THEN c1 ELSE c2 \<longleftrightarrow>
+  (EX d1 d2 P. c = IF b THEN d1 ELSE d2 {P} & strip d1 = c1 & strip d2 = c2)"
+by (cases c) simp_all
+
+lemma strip_eq_While:
+  "strip c = WHILE b DO c1 \<longleftrightarrow>
+  (EX I d1 P. c = {I} WHILE b DO d1 {P} & strip d1 = c1)"
+by (cases c) simp_all
+
+
+lemma set_annos_anno[simp]: "set (annos (anno a C)) = {a}"
+by(induction C)(auto)
+
+lemma size_annos_same: "strip C1 = strip C2 \<Longrightarrow> size(annos C1) = size(annos C2)"
+apply(induct C2 arbitrary: C1)
+apply (auto simp: strip_eq_SKIP strip_eq_Assign strip_eq_Seq strip_eq_If strip_eq_While)
+done
+
+lemmas size_annos_same2 = eqTrueI[OF size_annos_same]
+
+
+end