src/HOL/Ring_and_Field.thy
changeset 35032 7efe662e41b4
parent 35028 108662d50512
child 35043 07dbdf60d5ad
--- a/src/HOL/Ring_and_Field.thy	Fri Feb 05 14:33:50 2010 +0100
+++ b/src/HOL/Ring_and_Field.thy	Mon Feb 08 14:06:41 2010 +0100
@@ -2143,100 +2143,6 @@
   assumes abs_eq_mult:
     "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
 
-
-class lattice_ring = ordered_ring + lattice_ab_group_add_abs
-begin
-
-subclass semilattice_inf_ab_group_add ..
-subclass semilattice_sup_ab_group_add ..
-
-end
-
-lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lattice_ring))" 
-proof -
-  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
-  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
-  have a: "(abs a) * (abs b) = ?x"
-    by (simp only: abs_prts[of a] abs_prts[of b] algebra_simps)
-  {
-    fix u v :: 'a
-    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
-              u * v = pprt a * pprt b + pprt a * nprt b + 
-                      nprt a * pprt b + nprt a * nprt b"
-      apply (subst prts[of u], subst prts[of v])
-      apply (simp add: algebra_simps) 
-      done
-  }
-  note b = this[OF refl[of a] refl[of b]]
-  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
-  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
-  have xy: "- ?x <= ?y"
-    apply (simp)
-    apply (rule_tac y="0::'a" in order_trans)
-    apply (rule addm2)
-    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
-    apply (rule addm)
-    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
-    done
-  have yx: "?y <= ?x"
-    apply (simp add:diff_def)
-    apply (rule_tac y=0 in order_trans)
-    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
-    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
-    done
-  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
-  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
-  show ?thesis
-    apply (rule abs_leI)
-    apply (simp add: i1)
-    apply (simp add: i2[simplified minus_le_iff])
-    done
-qed
-
-instance lattice_ring \<subseteq> ordered_ring_abs
-proof
-  fix a b :: "'a\<Colon> lattice_ring"
-  assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
-  show "abs (a*b) = abs a * abs b"
-proof -
-  have s: "(0 <= a*b) | (a*b <= 0)"
-    apply (auto)    
-    apply (rule_tac split_mult_pos_le)
-    apply (rule_tac contrapos_np[of "a*b <= 0"])
-    apply (simp)
-    apply (rule_tac split_mult_neg_le)
-    apply (insert prems)
-    apply (blast)
-    done
-  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
-    by (simp add: prts[symmetric])
-  show ?thesis
-  proof cases
-    assume "0 <= a * b"
-    then show ?thesis
-      apply (simp_all add: mulprts abs_prts)
-      apply (insert prems)
-      apply (auto simp add: 
-        algebra_simps 
-        iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
-        iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id])
-        apply(drule (1) mult_nonneg_nonpos[of a b], simp)
-        apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
-      done
-  next
-    assume "~(0 <= a*b)"
-    with s have "a*b <= 0" by simp
-    then show ?thesis
-      apply (simp_all add: mulprts abs_prts)
-      apply (insert prems)
-      apply (auto simp add: algebra_simps)
-      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
-      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
-      done
-  qed
-qed
-qed
-
 context linordered_idom
 begin
 
@@ -2308,76 +2214,6 @@
   apply (simp add: order_less_imp_le)
 done
 
-
-subsection {* Bounds of products via negative and positive Part *}
-
-lemma mult_le_prts:
-  assumes
-  "a1 <= (a::'a::lattice_ring)"
-  "a <= a2"
-  "b1 <= b"
-  "b <= b2"
-  shows
-  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
-proof - 
-  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
-    apply (subst prts[symmetric])+
-    apply simp
-    done
-  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
-    by (simp add: algebra_simps)
-  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
-    by (simp_all add: prems mult_mono)
-  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
-  proof -
-    have "pprt a * nprt b <= pprt a * nprt b2"
-      by (simp add: mult_left_mono prems)
-    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
-      by (simp add: mult_right_mono_neg prems)
-    ultimately show ?thesis
-      by simp
-  qed
-  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
-  proof - 
-    have "nprt a * pprt b <= nprt a2 * pprt b"
-      by (simp add: mult_right_mono prems)
-    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
-      by (simp add: mult_left_mono_neg prems)
-    ultimately show ?thesis
-      by simp
-  qed
-  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
-  proof -
-    have "nprt a * nprt b <= nprt a * nprt b1"
-      by (simp add: mult_left_mono_neg prems)
-    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
-      by (simp add: mult_right_mono_neg prems)
-    ultimately show ?thesis
-      by simp
-  qed
-  ultimately show ?thesis
-    by - (rule add_mono | simp)+
-qed
-
-lemma mult_ge_prts:
-  assumes
-  "a1 <= (a::'a::lattice_ring)"
-  "a <= a2"
-  "b1 <= b"
-  "b <= b2"
-  shows
-  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
-proof - 
-  from prems have a1:"- a2 <= -a" by auto
-  from prems have a2: "-a <= -a1" by auto
-  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
-  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
-  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
-    by (simp only: minus_le_iff)
-  then show ?thesis by simp
-qed
-
-
 code_modulename SML
   Ring_and_Field Arith