src/HOL/Relation.thy
 changeset 1475 7f5a4cd08209 parent 1454 d0266c81a85e child 1695 0f9b9eda2a2c
```--- a/src/HOL/Relation.thy	Mon Feb 05 14:44:09 1996 +0100
+++ b/src/HOL/Relation.thy	Mon Feb 05 21:27:16 1996 +0100
@@ -1,24 +1,24 @@
-(*  Title: 	Relation.thy
+(*  Title:      Relation.thy
ID:         \$Id\$
-    Author: 	Riccardo Mattolini, Dip. Sistemi e Informatica
-        and	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Riccardo Mattolini, Dip. Sistemi e Informatica
+        and     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

Relation = Prod +
consts
-    id	        :: "('a * 'a)set"               (*the identity relation*)
-    O	        :: "[('b * 'c)set, ('a * 'b)set] => ('a * 'c)set" (infixr 60)
-    trans       :: "('a * 'a)set => bool" 	(*transitivity predicate*)
+    id          :: "('a * 'a)set"               (*the identity relation*)
+    O           :: "[('b * 'c)set, ('a * 'b)set] => ('a * 'c)set" (infixr 60)
+    trans       :: "('a * 'a)set => bool"       (*transitivity predicate*)
converse    :: "('a * 'b)set => ('b * 'a)set"
"^^"        :: "[('a * 'b) set, 'a set] => 'b set" (infixl 90)
Domain      :: "('a * 'b) set => 'a set"
Range       :: "('a * 'b) set => 'b set"
defs
-    id_def	"id == {p. ? x. p = (x,x)}"
-    comp_def	"r O s == {(x,z). ? y. (x,y):s & (y,z):r}"
-    trans_def	  "trans(r) == (!x y z. (x,y):r --> (y,z):r --> (x,z):r)"
+    id_def      "id == {p. ? x. p = (x,x)}"
+    comp_def    "r O s == {(x,z). ? y. (x,y):s & (y,z):r}"
+    trans_def     "trans(r) == (!x y z. (x,y):r --> (y,z):r --> (x,z):r)"
converse_def  "converse(r) == {(y,x). (x,y):r}"
Domain_def    "Domain(r) == {x. ? y. (x,y):r}"
Range_def     "Range(r) == Domain(converse(r))"```