src/HOL/Complex.thy
changeset 44748 7f6838b3474a
parent 44724 0b900a9d8023
child 44749 5b1e1432c320
--- a/src/HOL/Complex.thy	Tue Sep 06 07:41:15 2011 -0700
+++ b/src/HOL/Complex.thy	Tue Sep 06 07:45:18 2011 -0700
@@ -366,10 +366,6 @@
        (simp add: dist_norm real_sqrt_sum_squares_less)
 qed
 
-lemma LIMSEQ_Complex:
-  "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
-  by (rule tendsto_Complex)
-
 instance complex :: banach
 proof
   fix X :: "nat \<Rightarrow> complex"
@@ -379,7 +375,7 @@
   from Cauchy_Im [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
     by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
   have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
-    using LIMSEQ_Complex [OF 1 2] by simp
+    using tendsto_Complex [OF 1 2] by simp
   thus "convergent X"
     by (rule convergentI)
 qed