--- a/src/HOL/Nominal/Examples/Lam_substs.thy Sun Nov 27 03:55:16 2005 +0100
+++ b/src/HOL/Nominal/Examples/Lam_substs.thy Sun Nov 27 04:59:20 2005 +0100
@@ -1433,10 +1433,10 @@
consts
- "dom_sss" :: "(name\<times>lam) list \<Rightarrow> (name list)"
+ "domain" :: "(name\<times>lam) list \<Rightarrow> (name list)"
primrec
- "dom_sss [] = []"
- "dom_sss (x#\<theta>) = (fst x)#(dom_sss \<theta>)"
+ "domain [] = []"
+ "domain (x#\<theta>) = (fst x)#(domain \<theta>)"
consts
"apply_sss" :: "(name\<times>lam) list \<Rightarrow> name \<Rightarrow> lam" (" _ < _ >" [80,80] 80)
@@ -1446,15 +1446,15 @@
lemma apply_sss_eqvt[rule_format]:
fixes pi::"name prm"
- shows "a\<in>set (dom_sss \<theta>) \<longrightarrow> pi\<bullet>(\<theta><a>) = (pi\<bullet>\<theta>)<pi\<bullet>a>"
+ shows "a\<in>set (domain \<theta>) \<longrightarrow> pi\<bullet>(\<theta><a>) = (pi\<bullet>\<theta>)<pi\<bullet>a>"
apply(induct_tac \<theta>)
apply(auto)
apply(simp add: pt_bij[OF pt_name_inst, OF at_name_inst])
done
-lemma dom_sss_eqvt[rule_format]:
+lemma domain_eqvt[rule_format]:
fixes pi::"name prm"
- shows "((pi\<bullet>a)\<in>set (dom_sss \<theta>)) = (a\<in>set (dom_sss ((rev pi)\<bullet>\<theta>)))"
+ shows "((pi\<bullet>a)\<in>set (domain \<theta>)) = (a\<in>set (domain ((rev pi)\<bullet>\<theta>)))"
apply(induct_tac \<theta>)
apply(auto)
apply(simp_all add: pt_rev_pi[OF pt_name_inst, OF at_name_inst])
@@ -1463,7 +1463,7 @@
constdefs
psubst_Var :: "(name\<times>lam) list \<Rightarrow> name \<Rightarrow> lam"
- "psubst_Var \<theta> \<equiv> \<lambda>a. (if a\<in>set (dom_sss \<theta>) then \<theta><a> else (Var a))"
+ "psubst_Var \<theta> \<equiv> \<lambda>a. (if a\<in>set (domain \<theta>) then \<theta><a> else (Var a))"
psubst_App :: "(name\<times>lam) list \<Rightarrow> lam \<Rightarrow> lam \<Rightarrow> lam"
"psubst_App \<theta> \<equiv> \<lambda>r1 r2. App r1 r2"
@@ -1476,7 +1476,7 @@
lemma supports_psubst_Var:
shows "((supp \<theta>)::name set) supports (psubst_Var \<theta>)"
- by (supports_simp add: psubst_Var_def apply_sss_eqvt dom_sss_eqvt)
+ by (supports_simp add: psubst_Var_def apply_sss_eqvt domain_eqvt)
lemma supports_psubst_App:
shows "((supp \<theta>)::name set) supports psubst_App \<theta>"
@@ -1516,7 +1516,7 @@
done
lemma psubst_Var:
- shows "psubst_lam \<theta> (Var a) = (if a\<in>set (dom_sss \<theta>) then \<theta><a> else (Var a))"
+ shows "psubst_lam \<theta> (Var a) = (if a\<in>set (domain \<theta>) then \<theta><a> else (Var a))"
apply(simp add: psubst_lam_def)
apply(auto simp add: rfun_Var[OF fin_supp_psubst, OF fresh_psubst_Lam])
apply(auto simp add: psubst_Var_def)