src/HOL/Codatatype/Basic_BNFs.thy
changeset 48975 7f79f94a432c
child 48979 b62d14275b89
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Codatatype/Basic_BNFs.thy	Tue Aug 28 17:16:00 2012 +0200
@@ -0,0 +1,1529 @@
+(*  Title:      HOL/Codatatype/Basic_BNFs.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+    Author:     Andrei Popescu, TU Muenchen
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Registration of various types as bounded natural functors.
+*)
+
+header {* Registration of Various Types as Bounded Natural Functors *}
+
+theory Basic_BNFs
+imports BNF_Def "~~/src/HOL/Quotient_Examples/FSet"
+        "~~/src/HOL/Library/Multiset" Countable_Set
+begin
+
+lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
+
+lemma ctwo_card_order: "card_order ctwo"
+using Card_order_ctwo by (unfold ctwo_def Field_card_of)
+
+lemma natLeq_cinfinite: "cinfinite natLeq"
+unfolding cinfinite_def Field_natLeq by (rule nat_infinite)
+
+bnf_def ID = "id :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" ["\<lambda>x. {x}"] "\<lambda>_:: 'a. natLeq" ["id :: 'a \<Rightarrow> 'a"]
+apply auto
+apply (rule natLeq_card_order)
+apply (rule natLeq_cinfinite)
+apply (rule ordLess_imp_ordLeq[OF finite_ordLess_infinite[OF _ natLeq_Well_order]])
+apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)
+apply (rule ordLeq_transitive)
+apply (rule ordLeq_cexp1[of natLeq])
+apply (rule Cinfinite_Cnotzero)
+apply (rule conjI)
+apply (rule natLeq_cinfinite)
+apply (rule natLeq_Card_order)
+apply (rule card_of_Card_order)
+apply (rule cexp_mono1)
+apply (rule ordLeq_csum1)
+apply (rule card_of_Card_order)
+apply (rule disjI2)
+apply (rule cone_ordLeq_cexp)
+apply (rule ordLeq_transitive)
+apply (rule cone_ordLeq_ctwo)
+apply (rule ordLeq_csum2)
+apply (rule Card_order_ctwo)
+apply (rule natLeq_Card_order)
+done
+
+lemma ID_pred[simp]: "ID_pred \<phi> = \<phi>"
+unfolding ID_pred_def ID_rel_def Gr_def fun_eq_iff by auto
+
+bnf_def DEADID = "id :: 'a \<Rightarrow> 'a" [] "\<lambda>_:: 'a. natLeq +c |UNIV :: 'a set|" ["SOME x :: 'a. True"]
+apply (auto simp add: wpull_id)
+apply (rule card_order_csum)
+apply (rule natLeq_card_order)
+apply (rule card_of_card_order_on)
+apply (rule cinfinite_csum)
+apply (rule disjI1)
+apply (rule natLeq_cinfinite)
+apply (rule ordLess_imp_ordLeq)
+apply (rule ordLess_ordLeq_trans)
+apply (rule ordLess_ctwo_cexp)
+apply (rule card_of_Card_order)
+apply (rule cexp_mono2'')
+apply (rule ordLeq_csum2)
+apply (rule card_of_Card_order)
+apply (rule ctwo_Cnotzero)
+by (rule card_of_Card_order)
+
+lemma DEADID_pred[simp]: "DEADID_pred = (op =)"
+unfolding DEADID_pred_def DEADID.rel_Id by simp
+
+ML {*
+
+signature BASIC_BNFS =
+sig
+  val ID_bnf: BNF_Def.BNF
+  val ID_rel_def: thm
+  val ID_pred_def: thm
+
+  val DEADID_bnf: BNF_Def.BNF
+end;
+
+structure Basic_BNFs : BASIC_BNFS =
+struct
+
+  val ID_bnf = the (BNF_Def.bnf_of @{context} "ID");
+  val DEADID_bnf = the (BNF_Def.bnf_of @{context} "DEADID");
+
+  val rel_def = BNF_Def.rel_def_of_bnf ID_bnf;
+  val ID_rel_def = rel_def RS sym;
+  val ID_pred_def =
+    Local_Defs.unfold @{context} [rel_def] (BNF_Def.pred_def_of_bnf ID_bnf) RS sym;
+
+end;
+*}
+
+definition sum_setl :: "'a + 'b \<Rightarrow> 'a set" where
+"sum_setl x = (case x of Inl z => {z} | _ => {})"
+
+definition sum_setr :: "'a + 'b \<Rightarrow> 'b set" where
+"sum_setr x = (case x of Inr z => {z} | _ => {})"
+
+lemmas sum_set_defs = sum_setl_def[abs_def] sum_setr_def[abs_def]
+
+bnf_def sum = sum_map [sum_setl, sum_setr] "\<lambda>_::'a + 'b. natLeq" [Inl, Inr]
+proof -
+  show "sum_map id id = id" by (rule sum_map.id)
+next
+  fix f1 f2 g1 g2
+  show "sum_map (g1 o f1) (g2 o f2) = sum_map g1 g2 o sum_map f1 f2"
+    by (rule sum_map.comp[symmetric])
+next
+  fix x f1 f2 g1 g2
+  assume a1: "\<And>z. z \<in> sum_setl x \<Longrightarrow> f1 z = g1 z" and
+         a2: "\<And>z. z \<in> sum_setr x \<Longrightarrow> f2 z = g2 z"
+  thus "sum_map f1 f2 x = sum_map g1 g2 x"
+  proof (cases x)
+    case Inl thus ?thesis using a1 by (clarsimp simp: sum_setl_def)
+  next
+    case Inr thus ?thesis using a2 by (clarsimp simp: sum_setr_def)
+  qed
+next
+  fix f1 f2
+  show "sum_setl o sum_map f1 f2 = image f1 o sum_setl"
+    by (rule ext, unfold o_apply) (simp add: sum_setl_def split: sum.split)
+next
+  fix f1 f2
+  show "sum_setr o sum_map f1 f2 = image f2 o sum_setr"
+    by (rule ext, unfold o_apply) (simp add: sum_setr_def split: sum.split)
+next
+  show "card_order natLeq" by (rule natLeq_card_order)
+next
+  show "cinfinite natLeq" by (rule natLeq_cinfinite)
+next
+  fix x
+  show "|sum_setl x| \<le>o natLeq"
+    apply (rule ordLess_imp_ordLeq)
+    apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
+    by (simp add: sum_setl_def split: sum.split)
+next
+  fix x
+  show "|sum_setr x| \<le>o natLeq"
+    apply (rule ordLess_imp_ordLeq)
+    apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
+    by (simp add: sum_setr_def split: sum.split)
+next
+  fix A1 :: "'a set" and A2 :: "'b set"
+  have in_alt: "{x. (case x of Inl z => {z} | _ => {}) \<subseteq> A1 \<and>
+    (case x of Inr z => {z} | _ => {}) \<subseteq> A2} = A1 <+> A2" (is "?L = ?R")
+  proof safe
+    fix x :: "'a + 'b"
+    assume "(case x of Inl z \<Rightarrow> {z} | _ \<Rightarrow> {}) \<subseteq> A1" "(case x of Inr z \<Rightarrow> {z} | _ \<Rightarrow> {}) \<subseteq> A2"
+    hence "x \<in> Inl ` A1 \<or> x \<in> Inr ` A2" by (cases x) simp+
+    thus "x \<in> A1 <+> A2" by blast
+  qed (auto split: sum.split)
+  show "|{x. sum_setl x \<subseteq> A1 \<and> sum_setr x \<subseteq> A2}| \<le>o
+    (( |A1| +c |A2| ) +c ctwo) ^c natLeq"
+    apply (rule ordIso_ordLeq_trans)
+    apply (rule card_of_ordIso_subst)
+    apply (unfold sum_set_defs)
+    apply (rule in_alt)
+    apply (rule ordIso_ordLeq_trans)
+    apply (rule Plus_csum)
+    apply (rule ordLeq_transitive)
+    apply (rule ordLeq_csum1)
+    apply (rule Card_order_csum)
+    apply (rule ordLeq_cexp1)
+    apply (rule conjI)
+    using Field_natLeq UNIV_not_empty czeroE apply fast
+    apply (rule natLeq_Card_order)
+    by (rule Card_order_csum)
+next
+  fix A1 A2 B11 B12 B21 B22 f11 f12 f21 f22 p11 p12 p21 p22
+  assume "wpull A1 B11 B21 f11 f21 p11 p21" "wpull A2 B12 B22 f12 f22 p12 p22"
+  hence
+    pull1: "\<And>b1 b2. \<lbrakk>b1 \<in> B11; b2 \<in> B21; f11 b1 = f21 b2\<rbrakk> \<Longrightarrow> \<exists>a \<in> A1. p11 a = b1 \<and> p21 a = b2"
+    and pull2: "\<And>b1 b2. \<lbrakk>b1 \<in> B12; b2 \<in> B22; f12 b1 = f22 b2\<rbrakk> \<Longrightarrow> \<exists>a \<in> A2. p12 a = b1 \<and> p22 a = b2"
+    unfolding wpull_def by blast+
+  show "wpull {x. sum_setl x \<subseteq> A1 \<and> sum_setr x \<subseteq> A2}
+  {x. sum_setl x \<subseteq> B11 \<and> sum_setr x \<subseteq> B12} {x. sum_setl x \<subseteq> B21 \<and> sum_setr x \<subseteq> B22}
+  (sum_map f11 f12) (sum_map f21 f22) (sum_map p11 p12) (sum_map p21 p22)"
+    (is "wpull ?in ?in1 ?in2 ?mapf1 ?mapf2 ?mapp1 ?mapp2")
+  proof (unfold wpull_def)
+    { fix B1 B2
+      assume *: "B1 \<in> ?in1" "B2 \<in> ?in2" "?mapf1 B1 = ?mapf2 B2"
+      have "\<exists>A \<in> ?in. ?mapp1 A = B1 \<and> ?mapp2 A = B2"
+      proof (cases B1)
+        case (Inl b1)
+        { fix b2 assume "B2 = Inr b2"
+          with Inl *(3) have False by simp
+        } then obtain b2 where Inl': "B2 = Inl b2" by (cases B2) (simp, blast)
+        with Inl * have "b1 \<in> B11" "b2 \<in> B21" "f11 b1 = f21 b2"
+        by (simp add: sum_setl_def)+
+        with pull1 obtain a where "a \<in> A1" "p11 a = b1" "p21 a = b2" by blast+
+        with Inl Inl' have "Inl a \<in> ?in" "?mapp1 (Inl a) = B1 \<and> ?mapp2 (Inl a) = B2"
+        by (simp add: sum_set_defs)+
+        thus ?thesis by blast
+      next
+        case (Inr b1)
+        { fix b2 assume "B2 = Inl b2"
+          with Inr *(3) have False by simp
+        } then obtain b2 where Inr': "B2 = Inr b2" by (cases B2) (simp, blast)
+        with Inr * have "b1 \<in> B12" "b2 \<in> B22" "f12 b1 = f22 b2"
+        by (simp add: sum_set_defs)+
+        with pull2 obtain a where "a \<in> A2" "p12 a = b1" "p22 a = b2" by blast+
+        with Inr Inr' have "Inr a \<in> ?in" "?mapp1 (Inr a) = B1 \<and> ?mapp2 (Inr a) = B2"
+        by (simp add: sum_set_defs)+
+        thus ?thesis by blast
+      qed
+    }
+    thus "\<forall>B1 B2. B1 \<in> ?in1 \<and> B2 \<in> ?in2 \<and> ?mapf1 B1 = ?mapf2 B2 \<longrightarrow>
+      (\<exists>A \<in> ?in. ?mapp1 A = B1 \<and> ?mapp2 A = B2)" by fastforce
+  qed
+qed (auto simp: sum_set_defs)
+
+lemma sum_pred[simp]:
+  "sum_pred \<phi> \<psi> x y =
+    (case x of Inl a1 \<Rightarrow> (case y of Inl a2 \<Rightarrow> \<phi> a1 a2 | Inr _ \<Rightarrow> False)
+             | Inr b1 \<Rightarrow> (case y of Inl _ \<Rightarrow> False | Inr b2 \<Rightarrow> \<psi> b1 b2))"
+unfolding sum_setl_def sum_setr_def sum_pred_def sum_rel_def Gr_def relcomp_unfold converse_unfold
+by (fastforce split: sum.splits)+
+
+lemma singleton_ordLeq_ctwo_natLeq: "|{x}| \<le>o ctwo *c natLeq"
+  apply (rule ordLeq_transitive)
+  apply (rule ordLeq_cprod2)
+  apply (rule ctwo_Cnotzero)
+  apply (auto simp: Field_card_of intro: card_of_card_order_on)
+  apply (rule cprod_mono2)
+  apply (rule ordLess_imp_ordLeq)
+  apply (unfold finite_iff_ordLess_natLeq[symmetric])
+  by simp
+
+definition fsts :: "'a \<times> 'b \<Rightarrow> 'a set" where
+"fsts x = {fst x}"
+
+definition snds :: "'a \<times> 'b \<Rightarrow> 'b set" where
+"snds x = {snd x}"
+
+lemmas prod_set_defs = fsts_def[abs_def] snds_def[abs_def]
+
+bnf_def prod = map_pair [fsts, snds] "\<lambda>_::'a \<times> 'b. ctwo *c natLeq" [Pair]
+proof (unfold prod_set_defs)
+  show "map_pair id id = id" by (rule map_pair.id)
+next
+  fix f1 f2 g1 g2
+  show "map_pair (g1 o f1) (g2 o f2) = map_pair g1 g2 o map_pair f1 f2"
+    by (rule map_pair.comp[symmetric])
+next
+  fix x f1 f2 g1 g2
+  assume "\<And>z. z \<in> {fst x} \<Longrightarrow> f1 z = g1 z" "\<And>z. z \<in> {snd x} \<Longrightarrow> f2 z = g2 z"
+  thus "map_pair f1 f2 x = map_pair g1 g2 x" by (cases x) simp
+next
+  fix f1 f2
+  show "(\<lambda>x. {fst x}) o map_pair f1 f2 = image f1 o (\<lambda>x. {fst x})"
+    by (rule ext, unfold o_apply) simp
+next
+  fix f1 f2
+  show "(\<lambda>x. {snd x}) o map_pair f1 f2 = image f2 o (\<lambda>x. {snd x})"
+    by (rule ext, unfold o_apply) simp
+next
+  show "card_order (ctwo *c natLeq)"
+    apply (rule card_order_cprod)
+    apply (rule ctwo_card_order)
+    by (rule natLeq_card_order)
+next
+  show "cinfinite (ctwo *c natLeq)"
+    apply (rule cinfinite_cprod2)
+    apply (rule ctwo_Cnotzero)
+    apply (rule conjI[OF _ natLeq_Card_order])
+    by (rule natLeq_cinfinite)
+next
+  fix x
+  show "|{fst x}| \<le>o ctwo *c natLeq"
+    by (rule singleton_ordLeq_ctwo_natLeq)
+next
+  fix x
+  show "|{snd x}| \<le>o ctwo *c natLeq"
+    by (rule singleton_ordLeq_ctwo_natLeq)
+next
+  fix A1 :: "'a set" and A2 :: "'b set"
+  have in_alt: "{x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2} = A1 \<times> A2" by auto
+  show "|{x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2}| \<le>o
+    ( ( |A1| +c |A2| ) +c ctwo) ^c (ctwo *c natLeq)"
+    apply (rule ordIso_ordLeq_trans)
+    apply (rule card_of_ordIso_subst)
+    apply (rule in_alt)
+    apply (rule ordIso_ordLeq_trans)
+    apply (rule Times_cprod)
+    apply (rule ordLeq_transitive)
+    apply (rule cprod_csum_cexp)
+    apply (rule cexp_mono)
+    apply (rule ordLeq_csum1)
+    apply (rule Card_order_csum)
+    apply (rule ordLeq_cprod1)
+    apply (rule Card_order_ctwo)
+    apply (rule Cinfinite_Cnotzero)
+    apply (rule conjI[OF _ natLeq_Card_order])
+    apply (rule natLeq_cinfinite)
+    apply (rule disjI2)
+    apply (rule cone_ordLeq_cexp)
+    apply (rule ordLeq_transitive)
+    apply (rule cone_ordLeq_ctwo)
+    apply (rule ordLeq_csum2)
+    apply (rule Card_order_ctwo)
+    apply (rule notE)
+    apply (rule ctwo_not_czero)
+    apply assumption
+    by (rule Card_order_ctwo)
+next
+  fix A1 A2 B11 B12 B21 B22 f11 f12 f21 f22 p11 p12 p21 p22
+  assume "wpull A1 B11 B21 f11 f21 p11 p21" "wpull A2 B12 B22 f12 f22 p12 p22"
+  thus "wpull {x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2}
+    {x. {fst x} \<subseteq> B11 \<and> {snd x} \<subseteq> B12} {x. {fst x} \<subseteq> B21 \<and> {snd x} \<subseteq> B22}
+   (map_pair f11 f12) (map_pair f21 f22) (map_pair p11 p12) (map_pair p21 p22)"
+    unfolding wpull_def by simp fast
+qed simp+
+
+lemma prod_pred[simp]:
+"prod_pred \<phi> \<psi> p1 p2 = (case p1 of (a1, b1) \<Rightarrow> case p2 of (a2, b2) \<Rightarrow> (\<phi> a1 a2 \<and> \<psi> b1 b2))"
+unfolding prod_set_defs prod_pred_def prod_rel_def Gr_def relcomp_unfold converse_unfold by auto
+(* TODO: pred characterization for each basic BNF *)
+
+(* Categorical version of pullback: *)
+lemma wpull_cat:
+assumes p: "wpull A B1 B2 f1 f2 p1 p2"
+and c: "f1 o q1 = f2 o q2"
+and r: "range q1 \<subseteq> B1" "range q2 \<subseteq> B2"
+obtains h where "range h \<subseteq> A \<and> q1 = p1 o h \<and> q2 = p2 o h"
+proof-
+  have *: "\<forall>d. \<exists>a \<in> A. p1 a = q1 d & p2 a = q2 d"
+  proof safe
+    fix d
+    have "f1 (q1 d) = f2 (q2 d)" using c unfolding comp_def[abs_def] by (rule fun_cong)
+    moreover
+    have "q1 d : B1" "q2 d : B2" using r unfolding image_def by auto
+    ultimately show "\<exists>a \<in> A. p1 a = q1 d \<and> p2 a = q2 d"
+      using p unfolding wpull_def by auto
+  qed
+  then obtain h where "!! d. h d \<in> A & p1 (h d) = q1 d & p2 (h d) = q2 d" by metis
+  thus ?thesis using that by fastforce
+qed
+
+lemma card_of_bounded_range:
+  "|{f :: 'd \<Rightarrow> 'a. range f \<subseteq> B}| \<le>o |Func (UNIV :: 'd set) B|" (is "|?LHS| \<le>o |?RHS|")
+proof -
+  let ?f = "\<lambda>f. %x. if f x \<in> B then Some (f x) else None"
+  have "inj_on ?f ?LHS" unfolding inj_on_def
+  proof (unfold fun_eq_iff, safe)
+    fix g :: "'d \<Rightarrow> 'a" and f :: "'d \<Rightarrow> 'a" and x
+    assume "range f \<subseteq> B" "range g \<subseteq> B" and eq: "\<forall>x. ?f f x = ?f g x"
+    hence "f x \<in> B" "g x \<in> B" by auto
+    with eq have "Some (f x) = Some (g x)" by metis
+    thus "f x = g x" by simp
+  qed
+  moreover have "?f ` ?LHS \<subseteq> ?RHS" unfolding Func_def by fastforce
+  ultimately show ?thesis using card_of_ordLeq by fast
+qed
+
+bnf_def "fun" = "op \<circ>" [range] "\<lambda>_:: 'a \<Rightarrow> 'b. natLeq +c |UNIV :: 'a set|"
+  ["%c x::'b::type. c::'a::type"]
+proof
+  fix f show "id \<circ> f = id f" by simp
+next
+  fix f g show "op \<circ> (g \<circ> f) = op \<circ> g \<circ> op \<circ> f"
+  unfolding comp_def[abs_def] ..
+next
+  fix x f g
+  assume "\<And>z. z \<in> range x \<Longrightarrow> f z = g z"
+  thus "f \<circ> x = g \<circ> x" by auto
+next
+  fix f show "range \<circ> op \<circ> f = op ` f \<circ> range"
+  unfolding image_def comp_def[abs_def] by auto
+next
+  show "card_order (natLeq +c |UNIV| )" (is "_ (_ +c ?U)")
+  apply (rule card_order_csum)
+  apply (rule natLeq_card_order)
+  by (rule card_of_card_order_on)
+(*  *)
+  show "cinfinite (natLeq +c ?U)"
+    apply (rule cinfinite_csum)
+    apply (rule disjI1)
+    by (rule natLeq_cinfinite)
+next
+  fix f :: "'d => 'a"
+  have "|range f| \<le>o | (UNIV::'d set) |" (is "_ \<le>o ?U") by (rule card_of_image)
+  also have "?U \<le>o natLeq +c ?U"  by (rule ordLeq_csum2) (rule card_of_Card_order)
+  finally show "|range f| \<le>o natLeq +c ?U" .
+next
+  fix B :: "'a set"
+  have "|{f::'d => 'a. range f \<subseteq> B}| \<le>o |Func (UNIV :: 'd set) B|" by (rule card_of_bounded_range)
+  also have "|Func (UNIV :: 'd set) B| =o |B| ^c |UNIV :: 'd set|"
+    unfolding cexp_def Field_card_of by (rule card_of_refl)
+  also have "|B| ^c |UNIV :: 'd set| \<le>o
+             ( |B| +c ctwo) ^c (natLeq +c |UNIV :: 'd set| )"
+    apply (rule cexp_mono)
+     apply (rule ordLeq_csum1) apply (rule card_of_Card_order)
+     apply (rule ordLeq_csum2) apply (rule card_of_Card_order)
+     apply (rule disjI2) apply (rule cone_ordLeq_cexp)
+      apply (rule ordLeq_transitive) apply (rule cone_ordLeq_ctwo) apply (rule ordLeq_csum2)
+      apply (rule Card_order_ctwo)
+     apply (rule notE) apply (rule conjunct1) apply (rule Cnotzero_UNIV) apply blast
+     apply (rule card_of_Card_order)
+  done
+  finally
+  show "|{f::'d => 'a. range f \<subseteq> B}| \<le>o
+        ( |B| +c ctwo) ^c (natLeq +c |UNIV :: 'd set| )" .
+next
+  fix A B1 B2 f1 f2 p1 p2 assume p: "wpull A B1 B2 f1 f2 p1 p2"
+  show "wpull {h. range h \<subseteq> A} {g1. range g1 \<subseteq> B1} {g2. range g2 \<subseteq> B2}
+    (op \<circ> f1) (op \<circ> f2) (op \<circ> p1) (op \<circ> p2)"
+  unfolding wpull_def
+  proof safe
+    fix g1 g2 assume r: "range g1 \<subseteq> B1" "range g2 \<subseteq> B2"
+    and c: "f1 \<circ> g1 = f2 \<circ> g2"
+    show "\<exists>h \<in> {h. range h \<subseteq> A}. p1 \<circ> h = g1 \<and> p2 \<circ> h = g2"
+    using wpull_cat[OF p c r] by simp metis
+  qed
+qed auto
+
+lemma fun_pred[simp]: "fun_pred \<phi> f g = (\<forall>x. \<phi> (f x) (g x))"
+unfolding fun_rel_def fun_pred_def Gr_def relcomp_unfold converse_unfold
+by (auto intro!: exI dest!: in_mono)
+
+lemma card_of_list_in:
+  "|{xs. set xs \<subseteq> A}| \<le>o |Pfunc (UNIV :: nat set) A|" (is "|?LHS| \<le>o |?RHS|")
+proof -
+  let ?f = "%xs. %i. if i < length xs \<and> set xs \<subseteq> A then Some (nth xs i) else None"
+  have "inj_on ?f ?LHS" unfolding inj_on_def fun_eq_iff
+  proof safe
+    fix xs :: "'a list" and ys :: "'a list"
+    assume su: "set xs \<subseteq> A" "set ys \<subseteq> A" and eq: "\<forall>i. ?f xs i = ?f ys i"
+    hence *: "length xs = length ys"
+    by (metis linorder_cases option.simps(2) order_less_irrefl)
+    thus "xs = ys" by (rule nth_equalityI) (metis * eq su option.inject)
+  qed
+  moreover have "?f ` ?LHS \<subseteq> ?RHS" unfolding Pfunc_def by fastforce
+  ultimately show ?thesis using card_of_ordLeq by blast
+qed
+
+lemma list_in_empty: "A = {} \<Longrightarrow> {x. set x \<subseteq> A} = {[]}"
+by simp
+
+lemma card_of_Func: "|Func A B| =o |B| ^c |A|"
+unfolding cexp_def Field_card_of by (rule card_of_refl)
+
+lemma not_emp_czero_notIn_ordIso_Card_order:
+"A \<noteq> {} \<Longrightarrow> ( |A|, czero) \<notin> ordIso \<and> Card_order |A|"
+  apply (rule conjI)
+  apply (metis Field_card_of czeroE)
+  by (rule card_of_Card_order)
+
+lemma list_in_bd: "|{x. set x \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq"
+proof -
+  fix A :: "'a set"
+  show "|{x. set x \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq"
+  proof (cases "A = {}")
+    case False thus ?thesis
+      apply -
+      apply (rule ordLeq_transitive)
+      apply (rule card_of_list_in)
+      apply (rule ordLeq_transitive)
+      apply (erule card_of_Pfunc_Pow_Func)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule Times_cprod)
+      apply (rule cprod_cinfinite_bound)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule Pow_cexp_ctwo)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule cexp_cong2)
+      apply (rule card_of_nat)
+      apply (rule Card_order_ctwo)
+      apply (rule card_of_Card_order)
+      apply (rule natLeq_Card_order)
+      apply (rule disjI1)
+      apply (rule ctwo_Cnotzero)
+      apply (rule cexp_mono1)
+      apply (rule ordLeq_csum2)
+      apply (rule Card_order_ctwo)
+      apply (rule disjI1)
+      apply (rule ctwo_Cnotzero)
+      apply (rule natLeq_Card_order)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule card_of_Func)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule cexp_cong2)
+      apply (rule card_of_nat)
+      apply (rule card_of_Card_order)
+      apply (rule card_of_Card_order)
+      apply (rule natLeq_Card_order)
+      apply (rule disjI1)
+      apply (erule not_emp_czero_notIn_ordIso_Card_order)
+      apply (rule cexp_mono1)
+      apply (rule ordLeq_csum1)
+      apply (rule card_of_Card_order)
+      apply (rule disjI1)
+      apply (erule not_emp_czero_notIn_ordIso_Card_order)
+      apply (rule natLeq_Card_order)
+      apply (rule card_of_Card_order)
+      apply (rule card_of_Card_order)
+      apply (rule Cinfinite_cexp)
+      apply (rule ordLeq_csum2)
+      apply (rule Card_order_ctwo)
+      apply (rule conjI)
+      apply (rule natLeq_cinfinite)
+      by (rule natLeq_Card_order)
+  next
+    case True thus ?thesis
+      apply -
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule card_of_ordIso_subst)
+      apply (erule list_in_empty)
+      apply (rule ordIso_ordLeq_trans)
+      apply (rule single_cone)
+      apply (rule cone_ordLeq_cexp)
+      apply (rule ordLeq_transitive)
+      apply (rule cone_ordLeq_ctwo)
+      apply (rule ordLeq_csum2)
+      by (rule Card_order_ctwo)
+  qed
+qed
+
+bnf_def list = map [set] "\<lambda>_::'a list. natLeq" ["[]"]
+proof -
+  show "map id = id" by (rule List.map.id)
+next
+  fix f g
+  show "map (g o f) = map g o map f" by (rule List.map.comp[symmetric])
+next
+  fix x f g
+  assume "\<And>z. z \<in> set x \<Longrightarrow> f z = g z"
+  thus "map f x = map g x" by simp
+next
+  fix f
+  show "set o map f = image f o set" by (rule ext, unfold o_apply, rule set_map)
+next
+  show "card_order natLeq" by (rule natLeq_card_order)
+next
+  show "cinfinite natLeq" by (rule natLeq_cinfinite)
+next
+  fix x
+  show "|set x| \<le>o natLeq"
+    apply (rule ordLess_imp_ordLeq)
+    apply (rule finite_ordLess_infinite[OF _ natLeq_Well_order])
+    unfolding Field_natLeq Field_card_of by (auto simp: card_of_well_order_on)
+next
+  fix A :: "'a set"
+  show "|{x. set x \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq" by (rule list_in_bd)
+next
+  fix A B1 B2 f1 f2 p1 p2
+  assume "wpull A B1 B2 f1 f2 p1 p2"
+  hence pull: "\<And>b1 b2. b1 \<in> B1 \<and> b2 \<in> B2 \<and> f1 b1 = f2 b2 \<Longrightarrow> \<exists>a \<in> A. p1 a = b1 \<and> p2 a = b2"
+    unfolding wpull_def by auto
+  show "wpull {x. set x \<subseteq> A} {x. set x \<subseteq> B1} {x. set x \<subseteq> B2} (map f1) (map f2) (map p1) (map p2)"
+    (is "wpull ?A ?B1 ?B2 _ _ _ _")
+  proof (unfold wpull_def)
+    { fix as bs assume *: "as \<in> ?B1" "bs \<in> ?B2" "map f1 as = map f2 bs"
+      hence "length as = length bs" by (metis length_map)
+      hence "\<exists>zs \<in> ?A. map p1 zs = as \<and> map p2 zs = bs" using *
+      proof (induct as bs rule: list_induct2)
+        case (Cons a as b bs)
+        hence "a \<in> B1" "b \<in> B2" "f1 a = f2 b" by auto
+        with pull obtain z where "z \<in> A" "p1 z = a" "p2 z = b" by blast
+        moreover
+        from Cons obtain zs where "zs \<in> ?A" "map p1 zs = as" "map p2 zs = bs" by auto
+        ultimately have "z # zs \<in> ?A" "map p1 (z # zs) = a # as \<and> map p2 (z # zs) = b # bs" by auto
+        thus ?case by (rule_tac x = "z # zs" in bexI)
+      qed simp
+    }
+    thus "\<forall>as bs. as \<in> ?B1 \<and> bs \<in> ?B2 \<and> map f1 as = map f2 bs \<longrightarrow>
+      (\<exists>zs \<in> ?A. map p1 zs = as \<and> map p2 zs = bs)" by blast
+  qed
+qed auto
+
+bnf_def deadlist = "map id" [] "\<lambda>_::'a list. |lists (UNIV :: 'a set)|" ["[]"]
+by (auto simp add: cinfinite_def wpull_def infinite_UNIV_listI map.id
+  ordLeq_transitive ctwo_def card_of_card_order_on Field_card_of card_of_mono1 ordLeq_cexp2)
+
+(* Finite sets *)
+abbreviation afset where "afset \<equiv> abs_fset"
+abbreviation rfset where "rfset \<equiv> rep_fset"
+
+lemma fset_fset_member:
+"fset A = {a. a |\<in>| A}"
+unfolding fset_def fset_member_def by auto
+
+lemma afset_rfset:
+"afset (rfset x) = x"
+by (rule Quotient_fset[unfolded Quotient_def, THEN conjunct1, rule_format])
+
+lemma afset_rfset_id:
+"afset o rfset = id"
+unfolding comp_def afset_rfset id_def ..
+
+lemma rfset:
+"rfset A = rfset B \<longleftrightarrow> A = B"
+by (metis afset_rfset)
+
+lemma afset_set:
+"afset as = afset bs \<longleftrightarrow> set as = set bs"
+using Quotient_fset unfolding Quotient_def list_eq_def by auto
+
+lemma surj_afset:
+"\<exists> as. A = afset as"
+by (metis afset_rfset)
+
+lemma fset_def2:
+"fset = set o rfset"
+unfolding fset_def map_fun_def[abs_def] by simp
+
+lemma fset_def2_raw:
+"fset A = set (rfset A)"
+unfolding fset_def2 by simp
+
+lemma fset_comp_afset:
+"fset o afset = set"
+unfolding fset_def2 comp_def apply(rule ext)
+unfolding afset_set[symmetric] afset_rfset ..
+
+lemma fset_afset:
+"fset (afset as) = set as"
+unfolding fset_comp_afset[symmetric] by simp
+
+lemma set_rfset_afset:
+"set (rfset (afset as)) = set as"
+unfolding afset_set[symmetric] afset_rfset ..
+
+lemma map_fset_comp_afset:
+"(map_fset f) o afset = afset o (map f)"
+unfolding map_fset_def map_fun_def[abs_def] comp_def apply(rule ext)
+unfolding afset_set set_map set_rfset_afset id_apply ..
+
+lemma map_fset_afset:
+"(map_fset f) (afset as) = afset (map f as)"
+using map_fset_comp_afset unfolding comp_def fun_eq_iff by auto
+
+lemma fset_map_fset:
+"fset (map_fset f A) = (image f) (fset A)"
+apply(subst afset_rfset[symmetric, of A])
+unfolding map_fset_afset fset_afset set_map
+unfolding fset_def2_raw ..
+
+lemma map_fset_def2:
+"map_fset f = afset o (map f) o rfset"
+unfolding map_fset_def map_fun_def[abs_def] by simp
+
+lemma map_fset_def2_raw:
+"map_fset f A = afset (map f (rfset A))"
+unfolding map_fset_def2 by simp
+
+lemma finite_ex_fset:
+assumes "finite A"
+shows "\<exists> B. fset B = A"
+by (metis assms finite_list fset_afset)
+
+lemma wpull_image:
+assumes "wpull A B1 B2 f1 f2 p1 p2"
+shows "wpull (Pow A) (Pow B1) (Pow B2) (image f1) (image f2) (image p1) (image p2)"
+unfolding wpull_def Pow_def Bex_def mem_Collect_eq proof clarify
+  fix Y1 Y2 assume Y1: "Y1 \<subseteq> B1" and Y2: "Y2 \<subseteq> B2" and EQ: "f1 ` Y1 = f2 ` Y2"
+  def X \<equiv> "{a \<in> A. p1 a \<in> Y1 \<and> p2 a \<in> Y2}"
+  show "\<exists>X\<subseteq>A. p1 ` X = Y1 \<and> p2 ` X = Y2"
+  proof (rule exI[of _ X], intro conjI)
+    show "p1 ` X = Y1"
+    proof
+      show "Y1 \<subseteq> p1 ` X"
+      proof safe
+        fix y1 assume y1: "y1 \<in> Y1"
+        then obtain y2 where y2: "y2 \<in> Y2" and eq: "f1 y1 = f2 y2" using EQ by auto
+        then obtain x where "x \<in> A" and "p1 x = y1" and "p2 x = y2"
+        using assms y1 Y1 Y2 unfolding wpull_def by blast
+        thus "y1 \<in> p1 ` X" unfolding X_def using y1 y2 by auto
+      qed
+    qed(unfold X_def, auto)
+    show "p2 ` X = Y2"
+    proof
+      show "Y2 \<subseteq> p2 ` X"
+      proof safe
+        fix y2 assume y2: "y2 \<in> Y2"
+        then obtain y1 where y1: "y1 \<in> Y1" and eq: "f1 y1 = f2 y2" using EQ by force
+        then obtain x where "x \<in> A" and "p1 x = y1" and "p2 x = y2"
+        using assms y2 Y1 Y2 unfolding wpull_def by blast
+        thus "y2 \<in> p2 ` X" unfolding X_def using y1 y2 by auto
+      qed
+    qed(unfold X_def, auto)
+  qed(unfold X_def, auto)
+qed
+
+lemma fset_to_fset: "finite A \<Longrightarrow> fset (the_inv fset A) = A"
+by (rule f_the_inv_into_f) (auto simp: inj_on_def fset_cong dest!: finite_ex_fset)
+
+bnf_def fset = map_fset [fset] "\<lambda>_::'a fset. natLeq" ["{||}"]
+proof -
+  show "map_fset id = id"
+  unfolding map_fset_def2 map_id o_id afset_rfset_id ..
+next
+  fix f g
+  show "map_fset (g o f) = map_fset g o map_fset f"
+  unfolding map_fset_def2 map.comp[symmetric] comp_def apply(rule ext)
+  unfolding afset_set set_map fset_def2_raw[symmetric] image_image[symmetric]
+  unfolding map_fset_afset[symmetric] map_fset_image afset_rfset
+  by (rule refl)
+next
+  fix x f g
+  assume "\<And>z. z \<in> fset x \<Longrightarrow> f z = g z"
+  hence "map f (rfset x) = map g (rfset x)"
+  apply(intro map_cong) unfolding fset_def2_raw by auto
+  thus "map_fset f x = map_fset g x" unfolding map_fset_def2_raw
+  by (rule arg_cong)
+next
+  fix f
+  show "fset o map_fset f = image f o fset"
+  unfolding comp_def fset_map_fset ..
+next
+  show "card_order natLeq" by (rule natLeq_card_order)
+next
+  show "cinfinite natLeq" by (rule natLeq_cinfinite)
+next
+  fix x
+  show "|fset x| \<le>o natLeq"
+  unfolding fset_def2_raw
+  apply (rule ordLess_imp_ordLeq)
+  apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
+  by (rule finite_set)
+next
+  fix A :: "'a set"
+  have "|{x. fset x \<subseteq> A}| \<le>o |afset ` {as. set as \<subseteq> A}|"
+  apply(rule card_of_mono1) unfolding fset_def2_raw apply auto
+  apply (rule image_eqI)
+  by (auto simp: afset_rfset)
+  also have "|afset ` {as. set as \<subseteq> A}| \<le>o |{as. set as \<subseteq> A}|" using card_of_image .
+  also have "|{as. set as \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq" by (rule list_in_bd)
+  finally show "|{x. fset x \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq" .
+next
+  fix A B1 B2 f1 f2 p1 p2
+  assume wp: "wpull A B1 B2 f1 f2 p1 p2"
+  hence "wpull (Pow A) (Pow B1) (Pow B2) (image f1) (image f2) (image p1) (image p2)"
+  by(rule wpull_image)
+  show "wpull {x. fset x \<subseteq> A} {x. fset x \<subseteq> B1} {x. fset x \<subseteq> B2}
+              (map_fset f1) (map_fset f2) (map_fset p1) (map_fset p2)"
+  unfolding wpull_def Pow_def Bex_def mem_Collect_eq proof clarify
+    fix y1 y2
+    assume Y1: "fset y1 \<subseteq> B1" and Y2: "fset y2 \<subseteq> B2"
+    assume "map_fset f1 y1 = map_fset f2 y2"
+    hence EQ: "f1 ` (fset y1) = f2 ` (fset y2)" unfolding map_fset_def2_raw
+    unfolding afset_set set_map fset_def2_raw .
+    with Y1 Y2 obtain X where X: "X \<subseteq> A"
+    and Y1: "p1 ` X = fset y1" and Y2: "p2 ` X = fset y2"
+    using wpull_image[OF wp] unfolding wpull_def Pow_def
+    unfolding Bex_def mem_Collect_eq apply -
+    apply(erule allE[of _ "fset y1"], erule allE[of _ "fset y2"]) by auto
+    have "\<forall> y1' \<in> fset y1. \<exists> x. x \<in> X \<and> y1' = p1 x" using Y1 by auto
+    then obtain q1 where q1: "\<forall> y1' \<in> fset y1. q1 y1' \<in> X \<and> y1' = p1 (q1 y1')" by metis
+    have "\<forall> y2' \<in> fset y2. \<exists> x. x \<in> X \<and> y2' = p2 x" using Y2 by auto
+    then obtain q2 where q2: "\<forall> y2' \<in> fset y2. q2 y2' \<in> X \<and> y2' = p2 (q2 y2')" by metis
+    def X' \<equiv> "q1 ` (fset y1) \<union> q2 ` (fset y2)"
+    have X': "X' \<subseteq> A" and Y1: "p1 ` X' = fset y1" and Y2: "p2 ` X' = fset y2"
+    using X Y1 Y2 q1 q2 unfolding X'_def by auto
+    have fX': "finite X'" unfolding X'_def by simp
+    then obtain x where X'eq: "X' = fset x" by (auto dest: finite_ex_fset)
+    show "\<exists>x. fset x \<subseteq> A \<and> map_fset p1 x = y1 \<and> map_fset p2 x = y2"
+    apply(intro exI[of _ "x"]) using X' Y1 Y2
+    unfolding X'eq map_fset_def2_raw fset_def2_raw set_map[symmetric]
+    afset_set[symmetric] afset_rfset by simp
+  qed
+qed auto
+
+lemma fset_pred[simp]: "fset_pred R a b \<longleftrightarrow>
+  ((\<forall>t \<in> fset a. (\<exists>u \<in> fset b. R t u)) \<and>
+   (\<forall>t \<in> fset b. (\<exists>u \<in> fset a. R u t)))" (is "?L = ?R")
+proof
+  assume ?L thus ?R unfolding fset_rel_def fset_pred_def
+    Gr_def relcomp_unfold converse_unfold
+  apply (simp add: subset_eq Ball_def)
+  apply (rule conjI)
+  apply (clarsimp, metis snd_conv)
+  by (clarsimp, metis fst_conv)
+next
+  assume ?R
+  def R' \<equiv> "the_inv fset (Collect (split R) \<inter> (fset a \<times> fset b))" (is "the_inv fset ?R'")
+  have "finite ?R'" by (intro finite_Int[OF disjI2] finite_cartesian_product) auto
+  hence *: "fset R' = ?R'" unfolding R'_def by (intro fset_to_fset)
+  show ?L unfolding fset_rel_def fset_pred_def Gr_def relcomp_unfold converse_unfold
+  proof (intro CollectI prod_caseI exI conjI)
+    from * show "(R', a) = (R', map_fset fst R')" using conjunct1[OF `?R`]
+      by (auto simp add: fset_cong[symmetric] image_def Int_def split: prod.splits)
+    from * show "(R', b) = (R', map_fset snd R')" using conjunct2[OF `?R`]
+      by (auto simp add: fset_cong[symmetric] image_def Int_def split: prod.splits)
+  qed (auto simp add: *)
+qed
+
+(* Countable sets *)
+
+lemma card_of_countable_sets_range:
+fixes A :: "'a set"
+shows "|{X. X \<subseteq> A \<and> countable X \<and> X \<noteq> {}}| \<le>o |{f::nat \<Rightarrow> 'a. range f \<subseteq> A}|"
+apply(rule card_of_ordLeqI[of fromNat]) using inj_on_fromNat
+unfolding inj_on_def by auto
+
+lemma card_of_countable_sets_Func:
+"|{X. X \<subseteq> A \<and> countable X \<and> X \<noteq> {}}| \<le>o |A| ^c natLeq"
+using card_of_countable_sets_range card_of_Func_UNIV[THEN ordIso_symmetric]
+unfolding cexp_def Field_natLeq Field_card_of
+by(rule ordLeq_ordIso_trans)
+
+lemma ordLeq_countable_subsets:
+"|A| \<le>o |{X. X \<subseteq> A \<and> countable X}|"
+apply(rule card_of_ordLeqI[of "\<lambda> a. {a}"]) unfolding inj_on_def by auto
+
+lemma finite_countable_subset:
+"finite {X. X \<subseteq> A \<and> countable X} \<longleftrightarrow> finite A"
+apply default
+ apply (erule contrapos_pp)
+ apply (rule card_of_ordLeq_infinite)
+ apply (rule ordLeq_countable_subsets)
+ apply assumption
+apply (rule finite_Collect_conjI)
+apply (rule disjI1)
+by (erule finite_Collect_subsets)
+
+lemma card_of_countable_sets:
+"|{X. X \<subseteq> A \<and> countable X}| \<le>o ( |A| +c ctwo) ^c natLeq"
+(is "|?L| \<le>o _")
+proof(cases "finite A")
+  let ?R = "Func (UNIV::nat set) (A <+> (UNIV::bool set))"
+  case True hence "finite ?L" by simp
+  moreover have "infinite ?R"
+  apply(rule infinite_Func[of _ "Inr True" "Inr False"]) by auto
+  ultimately show ?thesis unfolding cexp_def csum_def ctwo_def Field_natLeq Field_card_of
+  apply(intro ordLess_imp_ordLeq) by (rule finite_ordLess_infinite2)
+next
+  case False
+  hence "|{X. X \<subseteq> A \<and> countable X}| =o |{X. X \<subseteq> A \<and> countable X} - {{}}|"
+  by (intro card_of_infinite_diff_finitte finite.emptyI finite.insertI ordIso_symmetric)
+     (unfold finite_countable_subset)
+  also have "|{X. X \<subseteq> A \<and> countable X} - {{}}| \<le>o |A| ^c natLeq"
+  using card_of_countable_sets_Func[of A] unfolding set_diff_eq by auto
+  also have "|A| ^c natLeq \<le>o ( |A| +c ctwo) ^c natLeq"
+  apply(rule cexp_mono1_cone_ordLeq)
+    apply(rule ordLeq_csum1, rule card_of_Card_order)
+    apply (rule cone_ordLeq_cexp)
+    apply (rule cone_ordLeq_Cnotzero)
+    using csum_Cnotzero2 ctwo_Cnotzero apply blast
+    by (rule natLeq_Card_order)
+  finally show ?thesis .
+qed
+
+bnf_def cset = cIm [rcset] "\<lambda>_::'a cset. natLeq" ["cEmp"]
+proof -
+  show "cIm id = id" unfolding cIm_def[abs_def] id_def by auto
+next
+  fix f g show "cIm (g \<circ> f) = cIm g \<circ> cIm f"
+  unfolding cIm_def[abs_def] apply(rule ext) unfolding comp_def by auto
+next
+  fix C f g assume eq: "\<And>a. a \<in> rcset C \<Longrightarrow> f a = g a"
+  thus "cIm f C = cIm g C"
+  unfolding cIm_def[abs_def] unfolding image_def by auto
+next
+  fix f show "rcset \<circ> cIm f = op ` f \<circ> rcset" unfolding cIm_def[abs_def] by auto
+next
+  show "card_order natLeq" by (rule natLeq_card_order)
+next
+  show "cinfinite natLeq" by (rule natLeq_cinfinite)
+next
+  fix C show "|rcset C| \<le>o natLeq" using rcset unfolding countable_def .
+next
+  fix A :: "'a set"
+  have "|{Z. rcset Z \<subseteq> A}| \<le>o |acset ` {X. X \<subseteq> A \<and> countable X}|"
+  apply(rule card_of_mono1) unfolding Pow_def image_def
+  proof (rule Collect_mono, clarsimp)
+    fix x
+    assume "rcset x \<subseteq> A"
+    hence "rcset x \<subseteq> A \<and> countable (rcset x) \<and> x = acset (rcset x)"
+    using acset_rcset[of x] rcset[of x] by force
+    thus "\<exists>y \<subseteq> A. countable y \<and> x = acset y" by blast
+  qed
+  also have "|acset ` {X. X \<subseteq> A \<and> countable X}| \<le>o |{X. X \<subseteq> A \<and> countable X}|"
+  using card_of_image .
+  also have "|{X. X \<subseteq> A \<and> countable X}| \<le>o ( |A| +c ctwo) ^c natLeq"
+  using card_of_countable_sets .
+  finally show "|{Z. rcset Z \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq" .
+next
+  fix A B1 B2 f1 f2 p1 p2
+  assume wp: "wpull A B1 B2 f1 f2 p1 p2"
+  show "wpull {x. rcset x \<subseteq> A} {x. rcset x \<subseteq> B1} {x. rcset x \<subseteq> B2}
+              (cIm f1) (cIm f2) (cIm p1) (cIm p2)"
+  unfolding wpull_def proof safe
+    fix y1 y2
+    assume Y1: "rcset y1 \<subseteq> B1" and Y2: "rcset y2 \<subseteq> B2"
+    assume "cIm f1 y1 = cIm f2 y2"
+    hence EQ: "f1 ` (rcset y1) = f2 ` (rcset y2)"
+    unfolding cIm_def by auto
+    with Y1 Y2 obtain X where X: "X \<subseteq> A"
+    and Y1: "p1 ` X = rcset y1" and Y2: "p2 ` X = rcset y2"
+    using wpull_image[OF wp] unfolding wpull_def Pow_def
+    unfolding Bex_def mem_Collect_eq apply -
+    apply(erule allE[of _ "rcset y1"], erule allE[of _ "rcset y2"]) by auto
+    have "\<forall> y1' \<in> rcset y1. \<exists> x. x \<in> X \<and> y1' = p1 x" using Y1 by auto
+    then obtain q1 where q1: "\<forall> y1' \<in> rcset y1. q1 y1' \<in> X \<and> y1' = p1 (q1 y1')" by metis
+    have "\<forall> y2' \<in> rcset y2. \<exists> x. x \<in> X \<and> y2' = p2 x" using Y2 by auto
+    then obtain q2 where q2: "\<forall> y2' \<in> rcset y2. q2 y2' \<in> X \<and> y2' = p2 (q2 y2')" by metis
+    def X' \<equiv> "q1 ` (rcset y1) \<union> q2 ` (rcset y2)"
+    have X': "X' \<subseteq> A" and Y1: "p1 ` X' = rcset y1" and Y2: "p2 ` X' = rcset y2"
+    using X Y1 Y2 q1 q2 unfolding X'_def by fast+
+    have fX': "countable X'" unfolding X'_def by simp
+    then obtain x where X'eq: "X' = rcset x" by (metis rcset_acset)
+    show "\<exists>x\<in>{x. rcset x \<subseteq> A}. cIm p1 x = y1 \<and> cIm p2 x = y2"
+    apply(intro bexI[of _ "x"]) using X' Y1 Y2 unfolding X'eq cIm_def by auto
+  qed
+qed (unfold cEmp_def, auto)
+
+
+(* Multisets *)
+
+lemma setsum_gt_0_iff:
+fixes f :: "'a \<Rightarrow> nat" assumes "finite A"
+shows "setsum f A > 0 \<longleftrightarrow> (\<exists> a \<in> A. f a > 0)"
+(is "?L \<longleftrightarrow> ?R")
+proof-
+  have "?L \<longleftrightarrow> \<not> setsum f A = 0" by fast
+  also have "... \<longleftrightarrow> (\<exists> a \<in> A. f a \<noteq> 0)" using assms by simp
+  also have "... \<longleftrightarrow> ?R" by simp
+  finally show ?thesis .
+qed
+
+(*   *)
+definition mmap :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> 'b \<Rightarrow> nat" where
+"mmap h f b = setsum f {a. h a = b \<and> f a > 0}"
+
+lemma mmap_id: "mmap id = id"
+proof (rule ext)+
+  fix f a show "mmap id f a = id f a"
+  proof(cases "f a = 0")
+    case False
+    hence 1: "{aa. aa = a \<and> 0 < f aa} = {a}" by auto
+    show ?thesis by (simp add: mmap_def id_apply 1)
+  qed(unfold mmap_def, auto)
+qed
+
+lemma inj_on_setsum_inv:
+assumes f: "f \<in> multiset"
+and 1: "(0::nat) < setsum f {a. h a = b' \<and> 0 < f a}" (is "0 < setsum f ?A'")
+and 2: "{a. h a = b \<and> 0 < f a} = {a. h a = b' \<and> 0 < f a}" (is "?A = ?A'")
+shows "b = b'"
+proof-
+  have "finite ?A'" using f unfolding multiset_def by auto
+  hence "?A' \<noteq> {}" using 1 setsum_gt_0_iff by auto
+  thus ?thesis using 2 by auto
+qed
+
+lemma mmap_comp:
+fixes h1 :: "'a \<Rightarrow> 'b" and h2 :: "'b \<Rightarrow> 'c"
+assumes f: "f \<in> multiset"
+shows "mmap (h2 o h1) f = (mmap h2 o mmap h1) f"
+unfolding mmap_def[abs_def] comp_def proof(rule ext)+
+  fix c :: 'c
+  let ?A = "{a. h2 (h1 a) = c \<and> 0 < f a}"
+  let ?As = "\<lambda> b. {a. h1 a = b \<and> 0 < f a}"
+  let ?B = "{b. h2 b = c \<and> 0 < setsum f (?As b)}"
+  have 0: "{?As b | b.  b \<in> ?B} = ?As ` ?B" by auto
+  have "\<And> b. finite (?As b)" using f unfolding multiset_def by simp
+  hence "?B = {b. h2 b = c \<and> ?As b \<noteq> {}}" using setsum_gt_0_iff by auto
+  hence A: "?A = \<Union> {?As b | b.  b \<in> ?B}" by auto
+  have "setsum f ?A = setsum (setsum f) {?As b | b.  b \<in> ?B}"
+  unfolding A apply(rule setsum_Union_disjoint)
+  using f unfolding multiset_def by auto
+  also have "... = setsum (setsum f) (?As ` ?B)" unfolding 0 ..
+  also have "... = setsum (setsum f o ?As) ?B" apply(rule setsum_reindex)
+  unfolding inj_on_def apply auto using inj_on_setsum_inv[OF f, of h1] by blast
+  also have "... = setsum (\<lambda> b. setsum f (?As b)) ?B" unfolding comp_def ..
+  finally show "setsum f ?A = setsum (\<lambda> b. setsum f (?As b)) ?B" .
+qed
+
+lemma mmap_comp1:
+fixes h1 :: "'a \<Rightarrow> 'b" and h2 :: "'b \<Rightarrow> 'c"
+assumes "f \<in> multiset"
+shows "mmap (\<lambda> a. h2 (h1 a)) f = mmap h2 (mmap h1 f)"
+using mmap_comp[OF assms] unfolding comp_def by auto
+
+lemma mmap:
+assumes "f \<in> multiset"
+shows "mmap h f \<in> multiset"
+using assms unfolding mmap_def[abs_def] multiset_def proof safe
+  assume fin: "finite {a. 0 < f a}"  (is "finite ?A")
+  show "finite {b. 0 < setsum f {a. h a = b \<and> 0 < f a}}"
+  (is "finite {b. 0 < setsum f (?As b)}")
+  proof- let ?B = "{b. 0 < setsum f (?As b)}"
+    have "\<And> b. finite (?As b)" using assms unfolding multiset_def by simp
+    hence B: "?B = {b. ?As b \<noteq> {}}" using setsum_gt_0_iff by auto
+    hence "?B \<subseteq> h ` ?A" by auto
+    thus ?thesis using finite_surj[OF fin] by auto
+  qed
+qed
+
+lemma mmap_cong:
+assumes "\<And>a. a \<in># M \<Longrightarrow> f a = g a"
+shows "mmap f (count M) = mmap g (count M)"
+using assms unfolding mmap_def[abs_def] by (intro ext, intro setsum_cong) auto
+
+abbreviation supp where "supp f \<equiv> {a. f a > 0}"
+
+lemma mmap_image_comp:
+assumes f: "f \<in> multiset"
+shows "(supp o mmap h) f = (image h o supp) f"
+unfolding mmap_def[abs_def] comp_def proof-
+  have "\<And> b. finite {a. h a = b \<and> 0 < f a}" (is "\<And> b. finite (?As b)")
+  using f unfolding multiset_def by auto
+  thus "{b. 0 < setsum f (?As b)} = h ` {a. 0 < f a}"
+  using setsum_gt_0_iff by auto
+qed
+
+lemma mmap_image:
+assumes f: "f \<in> multiset"
+shows "supp (mmap h f) = h ` (supp f)"
+using mmap_image_comp[OF assms] unfolding comp_def .
+
+lemma set_of_Abs_multiset:
+assumes f: "f \<in> multiset"
+shows "set_of (Abs_multiset f) = supp f"
+using assms unfolding set_of_def by (auto simp: Abs_multiset_inverse)
+
+lemma supp_count:
+"supp (count M) = set_of M"
+using assms unfolding set_of_def by auto
+
+lemma multiset_of_surj:
+"multiset_of ` {as. set as \<subseteq> A} = {M. set_of M \<subseteq> A}"
+proof safe
+  fix M assume M: "set_of M \<subseteq> A"
+  obtain as where eq: "M = multiset_of as" using surj_multiset_of unfolding surj_def by auto
+  hence "set as \<subseteq> A" using M by auto
+  thus "M \<in> multiset_of ` {as. set as \<subseteq> A}" using eq by auto
+next
+  show "\<And>x xa xb. \<lbrakk>set xa \<subseteq> A; xb \<in> set_of (multiset_of xa)\<rbrakk> \<Longrightarrow> xb \<in> A"
+  by (erule set_mp) (unfold set_of_multiset_of)
+qed
+
+lemma card_of_set_of:
+"|{M. set_of M \<subseteq> A}| \<le>o |{as. set as \<subseteq> A}|"
+apply(rule card_of_ordLeqI2[of _ multiset_of]) using multiset_of_surj by auto
+
+lemma nat_sum_induct:
+assumes "\<And>n1 n2. (\<And> m1 m2. m1 + m2 < n1 + n2 \<Longrightarrow> phi m1 m2) \<Longrightarrow> phi n1 n2"
+shows "phi (n1::nat) (n2::nat)"
+proof-
+  let ?chi = "\<lambda> n1n2 :: nat * nat. phi (fst n1n2) (snd n1n2)"
+  have "?chi (n1,n2)"
+  apply(induct rule: measure_induct[of "\<lambda> n1n2. fst n1n2 + snd n1n2" ?chi])
+  using assms by (metis fstI sndI)
+  thus ?thesis by simp
+qed
+
+lemma matrix_count:
+fixes ct1 ct2 :: "nat \<Rightarrow> nat"
+assumes "setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2}"
+shows
+"\<exists> ct. (\<forall> i1 \<le> n1. setsum (\<lambda> i2. ct i1 i2) {..<Suc n2} = ct1 i1) \<and>
+       (\<forall> i2 \<le> n2. setsum (\<lambda> i1. ct i1 i2) {..<Suc n1} = ct2 i2)"
+(is "?phi ct1 ct2 n1 n2")
+proof-
+  have "\<forall> ct1 ct2 :: nat \<Rightarrow> nat.
+        setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2} \<longrightarrow> ?phi ct1 ct2 n1 n2"
+  proof(induct rule: nat_sum_induct[of
+"\<lambda> n1 n2. \<forall> ct1 ct2 :: nat \<Rightarrow> nat.
+     setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2} \<longrightarrow> ?phi ct1 ct2 n1 n2"],
+      clarify)
+  fix n1 n2 :: nat and ct1 ct2 :: "nat \<Rightarrow> nat"
+  assume IH: "\<And> m1 m2. m1 + m2 < n1 + n2 \<Longrightarrow>
+                \<forall> dt1 dt2 :: nat \<Rightarrow> nat.
+                setsum dt1 {..<Suc m1} = setsum dt2 {..<Suc m2} \<longrightarrow> ?phi dt1 dt2 m1 m2"
+  and ss: "setsum ct1 {..<Suc n1} = setsum ct2 {..<Suc n2}"
+  show "?phi ct1 ct2 n1 n2"
+  proof(cases n1)
+    case 0 note n1 = 0
+    show ?thesis
+    proof(cases n2)
+      case 0 note n2 = 0
+      let ?ct = "\<lambda> i1 i2. ct2 0"
+      show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by simp
+    next
+      case (Suc m2) note n2 = Suc
+      let ?ct = "\<lambda> i1 i2. ct2 i2"
+      show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by auto
+    qed
+  next
+    case (Suc m1) note n1 = Suc
+    show ?thesis
+    proof(cases n2)
+      case 0 note n2 = 0
+      let ?ct = "\<lambda> i1 i2. ct1 i1"
+      show ?thesis apply(rule exI[of _ ?ct]) using n1 n2 ss by auto
+    next
+      case (Suc m2) note n2 = Suc
+      show ?thesis
+      proof(cases "ct1 n1 \<le> ct2 n2")
+        case True
+        def dt2 \<equiv> "\<lambda> i2. if i2 = n2 then ct2 i2 - ct1 n1 else ct2 i2"
+        have "setsum ct1 {..<Suc m1} = setsum dt2 {..<Suc n2}"
+        unfolding dt2_def using ss n1 True by auto
+        hence "?phi ct1 dt2 m1 n2" using IH[of m1 n2] n1 by simp
+        then obtain dt where
+        1: "\<And> i1. i1 \<le> m1 \<Longrightarrow> setsum (\<lambda> i2. dt i1 i2) {..<Suc n2} = ct1 i1" and
+        2: "\<And> i2. i2 \<le> n2 \<Longrightarrow> setsum (\<lambda> i1. dt i1 i2) {..<Suc m1} = dt2 i2" by auto
+        let ?ct = "\<lambda> i1 i2. if i1 = n1 then (if i2 = n2 then ct1 n1 else 0)
+                                       else dt i1 i2"
+        show ?thesis apply(rule exI[of _ ?ct])
+        using n1 n2 1 2 True unfolding dt2_def by simp
+      next
+        case False
+        hence False: "ct2 n2 < ct1 n1" by simp
+        def dt1 \<equiv> "\<lambda> i1. if i1 = n1 then ct1 i1 - ct2 n2 else ct1 i1"
+        have "setsum dt1 {..<Suc n1} = setsum ct2 {..<Suc m2}"
+        unfolding dt1_def using ss n2 False by auto
+        hence "?phi dt1 ct2 n1 m2" using IH[of n1 m2] n2 by simp
+        then obtain dt where
+        1: "\<And> i1. i1 \<le> n1 \<Longrightarrow> setsum (\<lambda> i2. dt i1 i2) {..<Suc m2} = dt1 i1" and
+        2: "\<And> i2. i2 \<le> m2 \<Longrightarrow> setsum (\<lambda> i1. dt i1 i2) {..<Suc n1} = ct2 i2" by force
+        let ?ct = "\<lambda> i1 i2. if i2 = n2 then (if i1 = n1 then ct2 n2 else 0)
+                                       else dt i1 i2"
+        show ?thesis apply(rule exI[of _ ?ct])
+        using n1 n2 1 2 False unfolding dt1_def by simp
+      qed
+    qed
+  qed
+  qed
+  thus ?thesis using assms by auto
+qed
+
+definition
+"inj2 u B1 B2 \<equiv>
+ \<forall> b1 b1' b2 b2'. {b1,b1'} \<subseteq> B1 \<and> {b2,b2'} \<subseteq> B2 \<and> u b1 b2 = u b1' b2'
+                  \<longrightarrow> b1 = b1' \<and> b2 = b2'"
+
+lemma matrix_count_finite:
+assumes B1: "B1 \<noteq> {}" "finite B1" and B2: "B2 \<noteq> {}" "finite B2" and u: "inj2 u B1 B2"
+and ss: "setsum N1 B1 = setsum N2 B2"
+shows "\<exists> M :: 'a \<Rightarrow> nat.
+            (\<forall> b1 \<in> B1. setsum (\<lambda> b2. M (u b1 b2)) B2 = N1 b1) \<and>
+            (\<forall> b2 \<in> B2. setsum (\<lambda> b1. M (u b1 b2)) B1 = N2 b2)"
+proof-
+  obtain n1 where "card B1 = Suc n1" using B1 by (metis card_insert finite.simps)
+  then obtain e1 where e1: "bij_betw e1 {..<Suc n1} B1"
+  using ex_bij_betw_finite_nat[OF B1(2)] by (metis atLeast0LessThan bij_betw_the_inv_into)
+  hence e1_inj: "inj_on e1 {..<Suc n1}" and e1_surj: "e1 ` {..<Suc n1} = B1"
+  unfolding bij_betw_def by auto
+  def f1 \<equiv> "inv_into {..<Suc n1} e1"
+  have f1: "bij_betw f1 B1 {..<Suc n1}"
+  and f1e1[simp]: "\<And> i1. i1 < Suc n1 \<Longrightarrow> f1 (e1 i1) = i1"
+  and e1f1[simp]: "\<And> b1. b1 \<in> B1 \<Longrightarrow> e1 (f1 b1) = b1" unfolding f1_def
+  apply (metis bij_betw_inv_into e1, metis bij_betw_inv_into_left e1 lessThan_iff)
+  by (metis e1_surj f_inv_into_f)
+  (*  *)
+  obtain n2 where "card B2 = Suc n2" using B2 by (metis card_insert finite.simps)
+  then obtain e2 where e2: "bij_betw e2 {..<Suc n2} B2"
+  using ex_bij_betw_finite_nat[OF B2(2)] by (metis atLeast0LessThan bij_betw_the_inv_into)
+  hence e2_inj: "inj_on e2 {..<Suc n2}" and e2_surj: "e2 ` {..<Suc n2} = B2"
+  unfolding bij_betw_def by auto
+  def f2 \<equiv> "inv_into {..<Suc n2} e2"
+  have f2: "bij_betw f2 B2 {..<Suc n2}"
+  and f2e2[simp]: "\<And> i2. i2 < Suc n2 \<Longrightarrow> f2 (e2 i2) = i2"
+  and e2f2[simp]: "\<And> b2. b2 \<in> B2 \<Longrightarrow> e2 (f2 b2) = b2" unfolding f2_def
+  apply (metis bij_betw_inv_into e2, metis bij_betw_inv_into_left e2 lessThan_iff)
+  by (metis e2_surj f_inv_into_f)
+  (*  *)
+  let ?ct1 = "N1 o e1"  let ?ct2 = "N2 o e2"
+  have ss: "setsum ?ct1 {..<Suc n1} = setsum ?ct2 {..<Suc n2}"
+  unfolding setsum_reindex[OF e1_inj, symmetric] setsum_reindex[OF e2_inj, symmetric]
+  e1_surj e2_surj using ss .
+  obtain ct where
+  ct1: "\<And> i1. i1 \<le> n1 \<Longrightarrow> setsum (\<lambda> i2. ct i1 i2) {..<Suc n2} = ?ct1 i1" and
+  ct2: "\<And> i2. i2 \<le> n2 \<Longrightarrow> setsum (\<lambda> i1. ct i1 i2) {..<Suc n1} = ?ct2 i2"
+  using matrix_count[OF ss] by blast
+  (*  *)
+  def A \<equiv> "{u b1 b2 | b1 b2. b1 \<in> B1 \<and> b2 \<in> B2}"
+  have "\<forall> a \<in> A. \<exists> b1b2 \<in> B1 <*> B2. u (fst b1b2) (snd b1b2) = a"
+  unfolding A_def Ball_def mem_Collect_eq by auto
+  then obtain h1h2 where h12:
+  "\<And>a. a \<in> A \<Longrightarrow> u (fst (h1h2 a)) (snd (h1h2 a)) = a \<and> h1h2 a \<in> B1 <*> B2" by metis
+  def h1 \<equiv> "fst o h1h2"  def h2 \<equiv> "snd o h1h2"
+  have h12[simp]: "\<And>a. a \<in> A \<Longrightarrow> u (h1 a) (h2 a) = a"
+                  "\<And> a. a \<in> A \<Longrightarrow> h1 a \<in> B1"  "\<And> a. a \<in> A \<Longrightarrow> h2 a \<in> B2"
+  using h12 unfolding h1_def h2_def by force+
+  {fix b1 b2 assume b1: "b1 \<in> B1" and b2: "b2 \<in> B2"
+   hence inA: "u b1 b2 \<in> A" unfolding A_def by auto
+   hence "u b1 b2 = u (h1 (u b1 b2)) (h2 (u b1 b2))" by auto
+   moreover have "h1 (u b1 b2) \<in> B1" "h2 (u b1 b2) \<in> B2" using inA by auto
+   ultimately have "h1 (u b1 b2) = b1 \<and> h2 (u b1 b2) = b2"
+   using u b1 b2 unfolding inj2_def by fastforce
+  }
+  hence h1[simp]: "\<And> b1 b2. \<lbrakk>b1 \<in> B1; b2 \<in> B2\<rbrakk> \<Longrightarrow> h1 (u b1 b2) = b1" and
+        h2[simp]: "\<And> b1 b2. \<lbrakk>b1 \<in> B1; b2 \<in> B2\<rbrakk> \<Longrightarrow> h2 (u b1 b2) = b2" by auto
+  def M \<equiv> "\<lambda> a. ct (f1 (h1 a)) (f2 (h2 a))"
+  show ?thesis
+  apply(rule exI[of _ M]) proof safe
+    fix b1 assume b1: "b1 \<in> B1"
+    hence f1b1: "f1 b1 \<le> n1" using f1 unfolding bij_betw_def
+    by (metis bij_betwE f1 lessThan_iff less_Suc_eq_le)
+    have "(\<Sum>b2\<in>B2. M (u b1 b2)) = (\<Sum>i2<Suc n2. ct (f1 b1) (f2 (e2 i2)))"
+    unfolding e2_surj[symmetric] setsum_reindex[OF e2_inj]
+    unfolding M_def comp_def apply(intro setsum_cong) apply force
+    by (metis e2_surj b1 h1 h2 imageI)
+    also have "... = N1 b1" using b1 ct1[OF f1b1] by simp
+    finally show "(\<Sum>b2\<in>B2. M (u b1 b2)) = N1 b1" .
+  next
+    fix b2 assume b2: "b2 \<in> B2"
+    hence f2b2: "f2 b2 \<le> n2" using f2 unfolding bij_betw_def
+    by (metis bij_betwE f2 lessThan_iff less_Suc_eq_le)
+    have "(\<Sum>b1\<in>B1. M (u b1 b2)) = (\<Sum>i1<Suc n1. ct (f1 (e1 i1)) (f2 b2))"
+    unfolding e1_surj[symmetric] setsum_reindex[OF e1_inj]
+    unfolding M_def comp_def apply(intro setsum_cong) apply force
+    by (metis e1_surj b2 h1 h2 imageI)
+    also have "... = N2 b2" using b2 ct2[OF f2b2] by simp
+    finally show "(\<Sum>b1\<in>B1. M (u b1 b2)) = N2 b2" .
+  qed
+qed
+
+lemma supp_vimage_mmap:
+assumes "M \<in> multiset"
+shows "supp M \<subseteq> f -` (supp (mmap f M))"
+using assms by (auto simp: mmap_image)
+
+lemma mmap_ge_0:
+assumes "M \<in> multiset"
+shows "0 < mmap f M b \<longleftrightarrow> (\<exists>a. 0 < M a \<and> f a = b)"
+proof-
+  have f: "finite {a. f a = b \<and> 0 < M a}" using assms unfolding multiset_def by auto
+  show ?thesis unfolding mmap_def setsum_gt_0_iff[OF f] by auto
+qed
+
+lemma finite_twosets:
+assumes "finite B1" and "finite B2"
+shows "finite {u b1 b2 |b1 b2. b1 \<in> B1 \<and> b2 \<in> B2}"  (is "finite ?A")
+proof-
+  have A: "?A = (\<lambda> b1b2. u (fst b1b2) (snd b1b2)) ` (B1 <*> B2)" by force
+  show ?thesis unfolding A using finite_cartesian_product[OF assms] by auto
+qed
+
+lemma wp_mmap:
+fixes A :: "'a set" and B1 :: "'b1 set" and B2 :: "'b2 set"
+assumes wp: "wpull A B1 B2 f1 f2 p1 p2"
+shows
+"wpull {M. M \<in> multiset \<and> supp M \<subseteq> A}
+       {N1. N1 \<in> multiset \<and> supp N1 \<subseteq> B1} {N2. N2 \<in> multiset \<and> supp N2 \<subseteq> B2}
+       (mmap f1) (mmap f2) (mmap p1) (mmap p2)"
+unfolding wpull_def proof (safe, unfold Bex_def mem_Collect_eq)
+  fix N1 :: "'b1 \<Rightarrow> nat" and N2 :: "'b2 \<Rightarrow> nat"
+  assume mmap': "mmap f1 N1 = mmap f2 N2"
+  and N1[simp]: "N1 \<in> multiset" "supp N1 \<subseteq> B1"
+  and N2[simp]: "N2 \<in> multiset" "supp N2 \<subseteq> B2"
+  have mN1[simp]: "mmap f1 N1 \<in> multiset" using N1 by (auto simp: mmap)
+  have mN2[simp]: "mmap f2 N2 \<in> multiset" using N2 by (auto simp: mmap)
+  def P \<equiv> "mmap f1 N1"
+  have P1: "P = mmap f1 N1" and P2: "P = mmap f2 N2" unfolding P_def using mmap' by auto
+  note P = P1 P2
+  have P_mult[simp]: "P \<in> multiset" unfolding P_def using N1 by auto
+  have fin_N1[simp]: "finite (supp N1)" using N1(1) unfolding multiset_def by auto
+  have fin_N2[simp]: "finite (supp N2)" using N2(1) unfolding multiset_def by auto
+  have fin_P[simp]: "finite (supp P)" using P_mult unfolding multiset_def by auto
+  (*  *)
+  def set1 \<equiv> "\<lambda> c. {b1 \<in> supp N1. f1 b1 = c}"
+  have set1[simp]: "\<And> c b1. b1 \<in> set1 c \<Longrightarrow> f1 b1 = c" unfolding set1_def by auto
+  have fin_set1: "\<And> c. c \<in> supp P \<Longrightarrow> finite (set1 c)"
+  using N1(1) unfolding set1_def multiset_def by auto
+  have set1_NE: "\<And> c. c \<in> supp P \<Longrightarrow> set1 c \<noteq> {}"
+  unfolding set1_def P1 mmap_ge_0[OF N1(1)] by auto
+  have supp_N1_set1: "supp N1 = (\<Union> c \<in> supp P. set1 c)"
+  using supp_vimage_mmap[OF N1(1), of f1] unfolding set1_def P1 by auto
+  hence set1_inclN1: "\<And>c. c \<in> supp P \<Longrightarrow> set1 c \<subseteq> supp N1" by auto
+  hence set1_incl: "\<And> c. c \<in> supp P \<Longrightarrow> set1 c \<subseteq> B1" using N1(2) by blast
+  have set1_disj: "\<And> c c'. c \<noteq> c' \<Longrightarrow> set1 c \<inter> set1 c' = {}"
+  unfolding set1_def by auto
+  have setsum_set1: "\<And> c. setsum N1 (set1 c) = P c"
+  unfolding P1 set1_def mmap_def apply(rule setsum_cong) by auto
+  (*  *)
+  def set2 \<equiv> "\<lambda> c. {b2 \<in> supp N2. f2 b2 = c}"
+  have set2[simp]: "\<And> c b2. b2 \<in> set2 c \<Longrightarrow> f2 b2 = c" unfolding set2_def by auto
+  have fin_set2: "\<And> c. c \<in> supp P \<Longrightarrow> finite (set2 c)"
+  using N2(1) unfolding set2_def multiset_def by auto
+  have set2_NE: "\<And> c. c \<in> supp P \<Longrightarrow> set2 c \<noteq> {}"
+  unfolding set2_def P2 mmap_ge_0[OF N2(1)] by auto
+  have supp_N2_set2: "supp N2 = (\<Union> c \<in> supp P. set2 c)"
+  using supp_vimage_mmap[OF N2(1), of f2] unfolding set2_def P2 by auto
+  hence set2_inclN2: "\<And>c. c \<in> supp P \<Longrightarrow> set2 c \<subseteq> supp N2" by auto
+  hence set2_incl: "\<And> c. c \<in> supp P \<Longrightarrow> set2 c \<subseteq> B2" using N2(2) by blast
+  have set2_disj: "\<And> c c'. c \<noteq> c' \<Longrightarrow> set2 c \<inter> set2 c' = {}"
+  unfolding set2_def by auto
+  have setsum_set2: "\<And> c. setsum N2 (set2 c) = P c"
+  unfolding P2 set2_def mmap_def apply(rule setsum_cong) by auto
+  (*  *)
+  have ss: "\<And> c. c \<in> supp P \<Longrightarrow> setsum N1 (set1 c) = setsum N2 (set2 c)"
+  unfolding setsum_set1 setsum_set2 ..
+  have "\<forall> c \<in> supp P. \<forall> b1b2 \<in> (set1 c) \<times> (set2 c).
+          \<exists> a \<in> A. p1 a = fst b1b2 \<and> p2 a = snd b1b2"
+  using wp set1_incl set2_incl unfolding wpull_def Ball_def mem_Collect_eq
+  by simp (metis set1 set2 set_rev_mp)
+  then obtain uu where uu:
+  "\<forall> c \<in> supp P. \<forall> b1b2 \<in> (set1 c) \<times> (set2 c).
+     uu c b1b2 \<in> A \<and> p1 (uu c b1b2) = fst b1b2 \<and> p2 (uu c b1b2) = snd b1b2" by metis
+  def u \<equiv> "\<lambda> c b1 b2. uu c (b1,b2)"
+  have u[simp]:
+  "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> u c b1 b2 \<in> A"
+  "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> p1 (u c b1 b2) = b1"
+  "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> p2 (u c b1 b2) = b2"
+  using uu unfolding u_def by auto
+  {fix c assume c: "c \<in> supp P"
+   have "inj2 (u c) (set1 c) (set2 c)" unfolding inj2_def proof clarify
+     fix b1 b1' b2 b2'
+     assume "{b1, b1'} \<subseteq> set1 c" "{b2, b2'} \<subseteq> set2 c" and 0: "u c b1 b2 = u c b1' b2'"
+     hence "p1 (u c b1 b2) = b1 \<and> p2 (u c b1 b2) = b2 \<and>
+            p1 (u c b1' b2') = b1' \<and> p2 (u c b1' b2') = b2'"
+     using u(2)[OF c] u(3)[OF c] by simp metis
+     thus "b1 = b1' \<and> b2 = b2'" using 0 by auto
+   qed
+  } note inj = this
+  def sset \<equiv> "\<lambda> c. {u c b1 b2 | b1 b2. b1 \<in> set1 c \<and> b2 \<in> set2 c}"
+  have fin_sset[simp]: "\<And> c. c \<in> supp P \<Longrightarrow> finite (sset c)" unfolding sset_def
+  using fin_set1 fin_set2 finite_twosets by blast
+  have sset_A: "\<And> c. c \<in> supp P \<Longrightarrow> sset c \<subseteq> A" unfolding sset_def by auto
+  {fix c a assume c: "c \<in> supp P" and ac: "a \<in> sset c"
+   then obtain b1 b2 where b1: "b1 \<in> set1 c" and b2: "b2 \<in> set2 c"
+   and a: "a = u c b1 b2" unfolding sset_def by auto
+   have "p1 a \<in> set1 c" and p2a: "p2 a \<in> set2 c"
+   using ac a b1 b2 c u(2) u(3) by simp+
+   hence "u c (p1 a) (p2 a) = a" unfolding a using b1 b2 inj[OF c]
+   unfolding inj2_def by (metis c u(2) u(3))
+  } note u_p12[simp] = this
+  {fix c a assume c: "c \<in> supp P" and ac: "a \<in> sset c"
+   hence "p1 a \<in> set1 c" unfolding sset_def by auto
+  }note p1[simp] = this
+  {fix c a assume c: "c \<in> supp P" and ac: "a \<in> sset c"
+   hence "p2 a \<in> set2 c" unfolding sset_def by auto
+  }note p2[simp] = this
+  (*  *)
+  {fix c assume c: "c \<in> supp P"
+   hence "\<exists> M. (\<forall> b1 \<in> set1 c. setsum (\<lambda> b2. M (u c b1 b2)) (set2 c) = N1 b1) \<and>
+               (\<forall> b2 \<in> set2 c. setsum (\<lambda> b1. M (u c b1 b2)) (set1 c) = N2 b2)"
+   unfolding sset_def
+   using matrix_count_finite[OF set1_NE[OF c] fin_set1[OF c]
+                                set2_NE[OF c] fin_set2[OF c] inj[OF c] ss[OF c]] by auto
+  }
+  then obtain Ms where
+  ss1: "\<And> c b1. \<lbrakk>c \<in> supp P; b1 \<in> set1 c\<rbrakk> \<Longrightarrow>
+                   setsum (\<lambda> b2. Ms c (u c b1 b2)) (set2 c) = N1 b1" and
+  ss2: "\<And> c b2. \<lbrakk>c \<in> supp P; b2 \<in> set2 c\<rbrakk> \<Longrightarrow>
+                   setsum (\<lambda> b1. Ms c (u c b1 b2)) (set1 c) = N2 b2"
+  by metis
+  def SET \<equiv> "\<Union> c \<in> supp P. sset c"
+  have fin_SET[simp]: "finite SET" unfolding SET_def apply(rule finite_UN_I) by auto
+  have SET_A: "SET \<subseteq> A" unfolding SET_def using sset_A by auto
+  have u_SET[simp]: "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk> \<Longrightarrow> u c b1 b2 \<in> SET"
+  unfolding SET_def sset_def by blast
+  {fix c a assume c: "c \<in> supp P" and a: "a \<in> SET" and p1a: "p1 a \<in> set1 c"
+   then obtain c' where c': "c' \<in> supp P" and ac': "a \<in> sset c'"
+   unfolding SET_def by auto
+   hence "p1 a \<in> set1 c'" unfolding sset_def by auto
+   hence eq: "c = c'" using p1a c c' set1_disj by auto
+   hence "a \<in> sset c" using ac' by simp
+  } note p1_rev = this
+  {fix c a assume c: "c \<in> supp P" and a: "a \<in> SET" and p2a: "p2 a \<in> set2 c"
+   then obtain c' where c': "c' \<in> supp P" and ac': "a \<in> sset c'"
+   unfolding SET_def by auto
+   hence "p2 a \<in> set2 c'" unfolding sset_def by auto
+   hence eq: "c = c'" using p2a c c' set2_disj by auto
+   hence "a \<in> sset c" using ac' by simp
+  } note p2_rev = this
+  (*  *)
+  have "\<forall> a \<in> SET. \<exists> c \<in> supp P. a \<in> sset c" unfolding SET_def by auto
+  then obtain h where h: "\<forall> a \<in> SET. h a \<in> supp P \<and> a \<in> sset (h a)" by metis
+  have h_u[simp]: "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
+                      \<Longrightarrow> h (u c b1 b2) = c"
+  by (metis h p2 set2 u(3) u_SET)
+  have h_u1: "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
+                      \<Longrightarrow> h (u c b1 b2) = f1 b1"
+  using h unfolding sset_def by auto
+  have h_u2: "\<And> c b1 b2. \<lbrakk>c \<in> supp P; b1 \<in> set1 c; b2 \<in> set2 c\<rbrakk>
+                      \<Longrightarrow> h (u c b1 b2) = f2 b2"
+  using h unfolding sset_def by auto
+  def M \<equiv> "\<lambda> a. if a \<in> SET \<and> p1 a \<in> supp N1 \<and> p2 a \<in> supp N2 then Ms (h a) a else 0"
+  have sM: "supp M \<subseteq> SET" "supp M \<subseteq> p1 -` (supp N1)" "supp M \<subseteq> p2 -` (supp N2)"
+  unfolding M_def by auto
+  show "\<exists>M. (M \<in> multiset \<and> supp M \<subseteq> A) \<and> mmap p1 M = N1 \<and> mmap p2 M = N2"
+  proof(rule exI[of _ M], safe)
+    show "M \<in> multiset"
+    unfolding multiset_def using finite_subset[OF sM(1) fin_SET] by simp
+  next
+    fix a assume "0 < M a"
+    thus "a \<in> A" unfolding M_def using SET_A by (cases "a \<in> SET") auto
+  next
+    show "mmap p1 M = N1"
+    unfolding mmap_def[abs_def] proof(rule ext)
+      fix b1
+      let ?K = "{a. p1 a = b1 \<and> 0 < M a}"
+      show "setsum M ?K = N1 b1"
+      proof(cases "b1 \<in> supp N1")
+        case False
+        hence "?K = {}" using sM(2) by auto
+        thus ?thesis using False by auto
+      next
+        case True
+        def c \<equiv> "f1 b1"
+        have c: "c \<in> supp P" and b1: "b1 \<in> set1 c"
+        unfolding set1_def c_def P1 using True by (auto simp: mmap_image)
+        have "setsum M ?K = setsum M {a. p1 a = b1 \<and> a \<in> SET}"
+        apply(rule setsum_mono_zero_cong_left) unfolding M_def by auto
+        also have "... = setsum M ((\<lambda> b2. u c b1 b2) ` (set2 c))"
+        apply(rule setsum_cong) using c b1 proof safe
+          fix a assume p1a: "p1 a \<in> set1 c" and "0 < P c" and "a \<in> SET"
+          hence ac: "a \<in> sset c" using p1_rev by auto
+          hence "a = u c (p1 a) (p2 a)" using c by auto
+          moreover have "p2 a \<in> set2 c" using ac c by auto
+          ultimately show "a \<in> u c (p1 a) ` set2 c" by auto
+        next
+          fix b2 assume b1: "b1 \<in> set1 c" and b2: "b2 \<in> set2 c"
+          hence "u c b1 b2 \<in> SET" using c by auto
+        qed auto
+        also have "... = setsum (\<lambda> b2. M (u c b1 b2)) (set2 c)"
+        unfolding comp_def[symmetric] apply(rule setsum_reindex)
+        using inj unfolding inj_on_def inj2_def using b1 c u(3) by blast
+        also have "... = N1 b1" unfolding ss1[OF c b1, symmetric]
+          apply(rule setsum_cong[OF refl]) unfolding M_def
+          using True h_u[OF c b1] set2_def u(2,3)[OF c b1] u_SET[OF c b1] by fastforce
+        finally show ?thesis .
+      qed
+    qed
+  next
+    show "mmap p2 M = N2"
+    unfolding mmap_def[abs_def] proof(rule ext)
+      fix b2
+      let ?K = "{a. p2 a = b2 \<and> 0 < M a}"
+      show "setsum M ?K = N2 b2"
+      proof(cases "b2 \<in> supp N2")
+        case False
+        hence "?K = {}" using sM(3) by auto
+        thus ?thesis using False by auto
+      next
+        case True
+        def c \<equiv> "f2 b2"
+        have c: "c \<in> supp P" and b2: "b2 \<in> set2 c"
+        unfolding set2_def c_def P2 using True by (auto simp: mmap_image)
+        have "setsum M ?K = setsum M {a. p2 a = b2 \<and> a \<in> SET}"
+        apply(rule setsum_mono_zero_cong_left) unfolding M_def by auto
+        also have "... = setsum M ((\<lambda> b1. u c b1 b2) ` (set1 c))"
+        apply(rule setsum_cong) using c b2 proof safe
+          fix a assume p2a: "p2 a \<in> set2 c" and "0 < P c" and "a \<in> SET"
+          hence ac: "a \<in> sset c" using p2_rev by auto
+          hence "a = u c (p1 a) (p2 a)" using c by auto
+          moreover have "p1 a \<in> set1 c" using ac c by auto
+          ultimately show "a \<in> (\<lambda>b1. u c b1 (p2 a)) ` set1 c" by auto
+        next
+          fix b2 assume b1: "b1 \<in> set1 c" and b2: "b2 \<in> set2 c"
+          hence "u c b1 b2 \<in> SET" using c by auto
+        qed auto
+        also have "... = setsum (M o (\<lambda> b1. u c b1 b2)) (set1 c)"
+        apply(rule setsum_reindex)
+        using inj unfolding inj_on_def inj2_def using b2 c u(2) by blast
+        also have "... = setsum (\<lambda> b1. M (u c b1 b2)) (set1 c)"
+        unfolding comp_def[symmetric] by simp
+        also have "... = N2 b2" unfolding ss2[OF c b2, symmetric]
+          apply(rule setsum_cong[OF refl]) unfolding M_def set2_def
+          using True h_u1[OF c _ b2] u(2,3)[OF c _ b2] u_SET[OF c _ b2]
+          unfolding set1_def by fastforce
+        finally show ?thesis .
+      qed
+    qed
+  qed
+qed
+
+definition mset_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" where
+"mset_map h = Abs_multiset \<circ> mmap h \<circ> count"
+
+bnf_def mset = mset_map [set_of] "\<lambda>_::'a multiset. natLeq" ["{#}"]
+unfolding mset_map_def
+proof -
+  show "Abs_multiset \<circ> mmap id \<circ> count = id" unfolding mmap_id by (auto simp: count_inverse)
+next
+  fix f g
+  show "Abs_multiset \<circ> mmap (g \<circ> f) \<circ> count =
+        Abs_multiset \<circ> mmap g \<circ> count \<circ> (Abs_multiset \<circ> mmap f \<circ> count)"
+  unfolding comp_def apply(rule ext)
+  by (auto simp: Abs_multiset_inverse count mmap_comp1 mmap)
+next
+  fix M f g assume eq: "\<And>a. a \<in> set_of M \<Longrightarrow> f a = g a"
+  thus "(Abs_multiset \<circ> mmap f \<circ> count) M = (Abs_multiset \<circ> mmap g \<circ> count) M" apply auto
+  unfolding cIm_def[abs_def] image_def
+  by (auto intro!: mmap_cong simp: Abs_multiset_inject count mmap)
+next
+  fix f show "set_of \<circ> (Abs_multiset \<circ> mmap f \<circ> count) = op ` f \<circ> set_of"
+  by (auto simp: count mmap mmap_image set_of_Abs_multiset supp_count)
+next
+  show "card_order natLeq" by (rule natLeq_card_order)
+next
+  show "cinfinite natLeq" by (rule natLeq_cinfinite)
+next
+  fix M show "|set_of M| \<le>o natLeq"
+  apply(rule ordLess_imp_ordLeq)
+  unfolding finite_iff_ordLess_natLeq[symmetric] using finite_set_of .
+next
+  fix A :: "'a set"
+  have "|{M. set_of M \<subseteq> A}| \<le>o |{as. set as \<subseteq> A}|" using card_of_set_of .
+  also have "|{as. set as \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq"
+  by (rule list_in_bd)
+  finally show "|{M. set_of M \<subseteq> A}| \<le>o ( |A| +c ctwo) ^c natLeq" .
+next
+  fix A B1 B2 f1 f2 p1 p2
+  let ?map = "\<lambda> f. Abs_multiset \<circ> mmap f \<circ> count"
+  assume wp: "wpull A B1 B2 f1 f2 p1 p2"
+  show "wpull {x. set_of x \<subseteq> A} {x. set_of x \<subseteq> B1} {x. set_of x \<subseteq> B2}
+              (?map f1) (?map f2) (?map p1) (?map p2)"
+  unfolding wpull_def proof safe
+    fix y1 y2
+    assume y1: "set_of y1 \<subseteq> B1" and y2: "set_of y2 \<subseteq> B2"
+    and m: "?map f1 y1 = ?map f2 y2"
+    def N1 \<equiv> "count y1"  def N2 \<equiv> "count y2"
+    have "N1 \<in> multiset \<and> supp N1 \<subseteq> B1" and "N2 \<in> multiset \<and> supp N2 \<subseteq> B2"
+    and "mmap f1 N1 = mmap f2 N2"
+    using y1 y2 m unfolding N1_def N2_def
+    by (auto simp: Abs_multiset_inject count mmap)
+    then obtain M where M: "M \<in> multiset \<and> supp M \<subseteq> A"
+    and N1: "mmap p1 M = N1" and N2: "mmap p2 M = N2"
+    using wp_mmap[OF wp] unfolding wpull_def by auto
+    def x \<equiv> "Abs_multiset M"
+    show "\<exists>x\<in>{x. set_of x \<subseteq> A}. ?map p1 x = y1 \<and> ?map p2 x = y2"
+    apply(intro bexI[of _ x]) using M N1 N2 unfolding N1_def N2_def x_def
+    by (auto simp: count_inverse Abs_multiset_inverse)
+  qed
+qed (unfold set_of_empty, auto)
+
+end