--- a/src/ZF/AC/DC.thy Mon May 21 14:36:24 2001 +0200
+++ b/src/ZF/AC/DC.thy Mon May 21 14:45:52 2001 +0200
@@ -16,15 +16,15 @@
rules
DC_def "DC(a) ==
- ALL X R. R<=Pow(X)*X &
- (ALL Y:Pow(X). Y lesspoll a --> (EX x:X. <Y,x> : R))
- --> (EX f:a->X. ALL b<a. <f``b,f`b> : R)"
+ \\<forall>X R. R \\<subseteq> Pow(X)*X &
+ (\\<forall>Y \\<in> Pow(X). Y lesspoll a --> (\\<exists>x \\<in> X. <Y,x> \\<in> R))
+ --> (\\<exists>f \\<in> a->X. \\<forall>b<a. <f``b,f`b> \\<in> R)"
- DC0_def "DC0 == ALL A B R. R <= A*B & R~=0 & range(R) <= domain(R)
- --> (EX f:nat->domain(R). ALL n:nat. <f`n,f`succ(n)>:R)"
+ DC0_def "DC0 == \\<forall>A B R. R \\<subseteq> A*B & R\\<noteq>0 & range(R) \\<subseteq> domain(R)
+ --> (\\<exists>f \\<in> nat->domain(R). \\<forall>n \\<in> nat. <f`n,f`succ(n)>:R)"
ff_def "ff(b, X, Q, R) ==
- transrec(b, %c r. THE x. first(x, {x:X. <r``c, x> : R}, Q))"
+ transrec(b, %c r. THE x. first(x, {x \\<in> X. <r``c, x> \\<in> R}, Q))"
locale DC0_imp =
@@ -35,10 +35,10 @@
R :: i
assumes
- all_ex "ALL Y:Pow(X). Y lesspoll nat --> (EX x:X. <Y, x> : R)"
+ all_ex "\\<forall>Y \\<in> Pow(X). Y lesspoll nat --> (\\<exists>x \\<in> X. <Y, x> \\<in> R)"
defines
- XX_def "XX == (UN n:nat. {f:n->X. ALL k:n. <f``k, f`k> : R})"
+ XX_def "XX == (\\<Union>n \\<in> nat. {f \\<in> n->X. \\<forall>k \\<in> n. <f``k, f`k> \\<in> R})"
RR_def "RR == {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))
& restrict(z2, domain(z1)) = z1}"
@@ -53,18 +53,18 @@
allRR :: o
defines
- XX_def "XX == (UN n:nat.
- {f:succ(n)->domain(R). ALL k:n. <f`k, f`succ(k)> : R})"
+ XX_def "XX == (\\<Union>n \\<in> nat.
+ {f \\<in> succ(n)->domain(R). \\<forall>k \\<in> n. <f`k, f`succ(k)> \\<in> R})"
RR_def
"RR == {<z1,z2>:Fin(XX)*XX.
- (domain(z2)=succ(UN f:z1. domain(f))
- & (ALL f:z1. restrict(z2, domain(f)) = f))
- | (~ (EX g:XX. domain(g)=succ(UN f:z1. domain(f))
- & (ALL f:z1. restrict(g, domain(f)) = f)) & z2={<0,x>})}"
+ (domain(z2)=succ(\\<Union>f \\<in> z1. domain(f))
+ & (\\<forall>f \\<in> z1. restrict(z2, domain(f)) = f))
+ | (~ (\\<exists>g \\<in> XX. domain(g)=succ(\\<Union>f \\<in> z1. domain(f))
+ & (\\<forall>f \\<in> z1. restrict(g, domain(f)) = f)) & z2={<0,x>})}"
allRR_def
- "allRR == ALL b<nat.
- <f``b, f`b> :
- {<z1,z2>:Fin(XX)*XX. (domain(z2)=succ(UN f:z1. domain(f))
- & (UN f:z1. domain(f)) = b
- & (ALL f:z1. restrict(z2,domain(f)) = f))}"
+ "allRR == \\<forall>b<nat.
+ <f``b, f`b> \\<in>
+ {<z1,z2>:Fin(XX)*XX. (domain(z2)=succ(\\<Union>f \\<in> z1. domain(f))
+ & (\\<Union>f \\<in> z1. domain(f)) = b
+ & (\\<forall>f \\<in> z1. restrict(z2,domain(f)) = f))}"
end