--- a/src/HOL/UNITY/PPROD.thy Sun Dec 27 21:46:36 2015 +0100
+++ b/src/HOL/UNITY/PPROD.thy Sun Dec 27 22:07:17 2015 +0100
@@ -48,9 +48,9 @@
lemma PLam_constrains:
"[| i \<in> I; \<forall>j. F j \<in> preserves snd |]
- ==> (PLam I F \<in> (lift_set i (A <*> UNIV)) co
- (lift_set i (B <*> UNIV))) =
- (F i \<in> (A <*> UNIV) co (B <*> UNIV))"
+ ==> (PLam I F \<in> (lift_set i (A \<times> UNIV)) co
+ (lift_set i (B \<times> UNIV))) =
+ (F i \<in> (A \<times> UNIV) co (B \<times> UNIV))"
apply (simp add: PLam_def JN_constrains)
apply (subst insert_Diff [symmetric], assumption)
apply (simp add: lift_constrains)
@@ -59,8 +59,8 @@
lemma PLam_stable:
"[| i \<in> I; \<forall>j. F j \<in> preserves snd |]
- ==> (PLam I F \<in> stable (lift_set i (A <*> UNIV))) =
- (F i \<in> stable (A <*> UNIV))"
+ ==> (PLam I F \<in> stable (lift_set i (A \<times> UNIV))) =
+ (F i \<in> stable (A \<times> UNIV))"
by (simp add: stable_def PLam_constrains)
lemma PLam_transient:
@@ -70,9 +70,9 @@
text{*This holds because the @{term "F j"} cannot change @{term "lift_set i"}*}
lemma PLam_ensures:
- "[| i \<in> I; F i \<in> (A <*> UNIV) ensures (B <*> UNIV);
+ "[| i \<in> I; F i \<in> (A \<times> UNIV) ensures (B \<times> UNIV);
\<forall>j. F j \<in> preserves snd |]
- ==> PLam I F \<in> lift_set i (A <*> UNIV) ensures lift_set i (B <*> UNIV)"
+ ==> PLam I F \<in> lift_set i (A \<times> UNIV) ensures lift_set i (B \<times> UNIV)"
apply (simp add: ensures_def PLam_constrains PLam_transient
lift_set_Un_distrib [symmetric] lift_set_Diff_distrib [symmetric]
Times_Un_distrib1 [symmetric] Times_Diff_distrib1 [symmetric])
@@ -82,11 +82,11 @@
lemma PLam_leadsTo_Basis:
"[| i \<in> I;
- F i \<in> ((A <*> UNIV) - (B <*> UNIV)) co
- ((A <*> UNIV) \<union> (B <*> UNIV));
- F i \<in> transient ((A <*> UNIV) - (B <*> UNIV));
+ F i \<in> ((A \<times> UNIV) - (B \<times> UNIV)) co
+ ((A \<times> UNIV) \<union> (B \<times> UNIV));
+ F i \<in> transient ((A \<times> UNIV) - (B \<times> UNIV));
\<forall>j. F j \<in> preserves snd |]
- ==> PLam I F \<in> lift_set i (A <*> UNIV) leadsTo lift_set i (B <*> UNIV)"
+ ==> PLam I F \<in> lift_set i (A \<times> UNIV) leadsTo lift_set i (B \<times> UNIV)"
by (rule PLam_ensures [THEN leadsTo_Basis], rule_tac [2] ensuresI)
@@ -94,9 +94,9 @@
(** invariant **)
lemma invariant_imp_PLam_invariant:
- "[| F i \<in> invariant (A <*> UNIV); i \<in> I;
+ "[| F i \<in> invariant (A \<times> UNIV); i \<in> I;
\<forall>j. F j \<in> preserves snd |]
- ==> PLam I F \<in> invariant (lift_set i (A <*> UNIV))"
+ ==> PLam I F \<in> invariant (lift_set i (A \<times> UNIV))"
by (auto simp add: PLam_stable invariant_def)