doc-src/TutorialI/Misc/Itrev.thy
changeset 9844 8016321c7de1
parent 9792 bbefb6ce5cb2
child 10362 c6b197ccf1f1
--- a/doc-src/TutorialI/Misc/Itrev.thy	Tue Sep 05 13:12:00 2000 +0200
+++ b/doc-src/TutorialI/Misc/Itrev.thy	Tue Sep 05 13:53:39 2000 +0200
@@ -2,7 +2,32 @@
 theory Itrev = Main:;
 (*>*)
 
-text{*
+section{*Induction heuristics*}
+
+text{*\label{sec:InductionHeuristics}
+The purpose of this section is to illustrate some simple heuristics for
+inductive proofs. The first one we have already mentioned in our initial
+example:
+\begin{quote}
+\emph{Theorems about recursive functions are proved by induction.}
+\end{quote}
+In case the function has more than one argument
+\begin{quote}
+\emph{Do induction on argument number $i$ if the function is defined by
+recursion in argument number $i$.}
+\end{quote}
+When we look at the proof of @{term[source]"(xs @ ys) @ zs = xs @ (ys @ zs)"}
+in \S\ref{sec:intro-proof} we find (a) @{text"@"} is recursive in
+the first argument, (b) @{term xs} occurs only as the first argument of
+@{text"@"}, and (c) both @{term ys} and @{term zs} occur at least once as
+the second argument of @{text"@"}. Hence it is natural to perform induction
+on @{term xs}.
+
+The key heuristic, and the main point of this section, is to
+generalize the goal before induction. The reason is simple: if the goal is
+too specific, the induction hypothesis is too weak to allow the induction
+step to go through. Let us now illustrate the idea with an example.
+
 Function @{term"rev"} has quadratic worst-case running time
 because it calls function @{text"@"} for each element of the list and
 @{text"@"} is linear in its first argument.  A linear time version of
@@ -36,7 +61,7 @@
 
 txt{*\noindent
 Unfortunately, this is not a complete success:
-\begin{isabelle}
+\begin{isabelle}\makeatother
 ~1.~\dots~itrev~list~[]~=~rev~list~{\isasymLongrightarrow}~itrev~list~[a]~=~rev~list~@~[a]%
 \end{isabelle}
 Just as predicted above, the overall goal, and hence the induction
@@ -62,7 +87,7 @@
 Although we now have two variables, only @{term"xs"} is suitable for
 induction, and we repeat our above proof attempt. Unfortunately, we are still
 not there:
-\begin{isabelle}
+\begin{isabelle}\makeatother
 ~1.~{\isasymAnd}a~list.\isanewline
 ~~~~~~~itrev~list~ys~=~rev~list~@~ys~{\isasymLongrightarrow}\isanewline
 ~~~~~~~itrev~list~(a~\#~ys)~=~rev~list~@~a~\#~ys
@@ -75,8 +100,11 @@
 *};
 (*<*)oops;(*>*)
 lemma "\\<forall>ys. itrev xs ys = rev xs @ ys";
+(*<*)
+by(induct_tac xs, simp_all);
+(*>*)
 
-txt{*\noindent
+text{*\noindent
 This time induction on @{term"xs"} followed by simplification succeeds. This
 leads to another heuristic for generalization:
 \begin{quote}
@@ -94,9 +122,19 @@
 the problem at hand and is beyond simple rules of thumb. In a nutshell: you
 will need to be creative. Additionally, you can read \S\ref{sec:advanced-ind}
 to learn about some advanced techniques for inductive proofs.
-*};
 
+A final point worth mentioning is the orientation of the equation we just
+proved: the more complex notion (@{term itrev}) is on the left-hand
+side, the simpler one (@{term rev}) on the right-hand side. This constitutes
+another, albeit weak heuristic that is not restricted to induction:
+\begin{quote}
+  \emph{The right-hand side of an equation should (in some sense) be simpler
+    than the left-hand side.}
+\end{quote}
+This heuristic is tricky to apply because it is not obvious that
+@{term"rev xs @ ys"} is simpler than @{term"itrev xs ys"}. But see what
+happens if you try to prove @{prop"rev xs @ ys = itrev xs ys"}!
+*}
 (*<*)
-by(induct_tac xs, simp_all);
 end
 (*>*)