src/CCL/ccl.thy
changeset 13894 8018173a7979
parent 13893 19849d258890
child 13895 b6105462ccd3
--- a/src/CCL/ccl.thy	Sat Apr 05 16:00:00 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,148 +0,0 @@
-(*  Title: 	CCL/ccl.thy
-    ID:         $Id$
-    Author: 	Martin Coen
-    Copyright   1993  University of Cambridge
-
-Classical Computational Logic for Untyped Lambda Calculus with reduction to 
-weak head-normal form.
-
-Based on FOL extended with set collection, a primitive higher-order logic.
-HOL is too strong - descriptions prevent a type of programs being defined
-which contains only executable terms.
-*)
-
-CCL = Gfp +
-
-classes prog < term
-
-default prog
-
-types i
-
-arities 
-      i          :: prog
-      fun        :: (prog,prog)prog
-
-consts
-  (*** Evaluation Judgement ***)
-  "--->"      ::       "[i,i]=>prop"          (infixl 20)
-
-  (*** Bisimulations for pre-order and equality ***)
-  "[="        ::       "['a,'a]=>o"           (infixl 50)
-  SIM         ::       "[i,i,i set]=>o"
-  POgen,EQgen ::       "i set => i set"
-  PO,EQ       ::       "i set"
-
-  (*** Term Formers ***)
-  true,false  ::       "i"
-  pair        ::       "[i,i]=>i"             ("(1<_,/_>)")
-  lambda      ::       "(i=>i)=>i"            (binder "lam " 55)
-  case        ::       "[i,i,i,[i,i]=>i,(i=>i)=>i]=>i"
-  "`"         ::       "[i,i]=>i"             (infixl 56)
-  bot         ::       "i"
-  fix         ::       "(i=>i)=>i"
-
-  (*** Defined Predicates ***)
-  Trm,Dvg     ::       "i => o"
-
-rules
-
-  (******* EVALUATION SEMANTICS *******)
-
-  (**  This is the evaluation semantics from which the axioms below were derived.  **)
-  (**  It is included here just as an evaluator for FUN and has no influence on    **)
-  (**  inference in the theory CCL.                                                **)
-
-  trueV       "true ---> true"
-  falseV      "false ---> false"
-  pairV       "<a,b> ---> <a,b>"
-  lamV        "lam x.b(x) ---> lam x.b(x)"
-  caseVtrue   "[| t ---> true;  d ---> c |] ==> case(t,d,e,f,g) ---> c"
-  caseVfalse  "[| t ---> false;  e ---> c |] ==> case(t,d,e,f,g) ---> c"
-  caseVpair   "[| t ---> <a,b>;  f(a,b) ---> c |] ==> case(t,d,e,f,g) ---> c"
-  caseVlam    "[| t ---> lam x.b(x);  g(b) ---> c |] ==> case(t,d,e,f,g) ---> c"
-
-  (*** Properties of evaluation: note that "t ---> c" impies that c is canonical ***)
-
-  canonical  "[| t ---> c; c==true ==> u--->v; \
-\                          c==false ==> u--->v; \
-\                    !!a b.c==<a,b> ==> u--->v; \
-\                      !!f.c==lam x.f(x) ==> u--->v |] ==> \
-\             u--->v"
-
-  (* Should be derivable - but probably a bitch! *)
-  substitute "[| a==a'; t(a)--->c(a) |] ==> t(a')--->c(a')"
-
-  (************** LOGIC ***************)
-
-  (*** Definitions used in the following rules ***)
-
-  apply_def     "f ` t == case(f,bot,bot,%x y.bot,%u.u(t))"
-  bot_def         "bot == (lam x.x`x)`(lam x.x`x)"
-  fix_def      "fix(f) == (lam x.f(x`x))`(lam x.f(x`x))"
-
-  (*  The pre-order ([=) is defined as a simulation, and behavioural equivalence (=) *)
-  (*  as a bisimulation.  They can both be expressed as (bi)simulations up to        *)
-  (*  behavioural equivalence (ie the relations PO and EQ defined below).            *)
-
-  SIM_def
-  "SIM(t,t',R) ==  (t=true & t'=true) | (t=false & t'=false) | \
-\                  (EX a a' b b'.t=<a,b> & t'=<a',b'> & <a,a'> : R & <b,b'> : R) | \
-\                  (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.<f(x),f'(x)> : R))"
-
-  POgen_def  "POgen(R) == {p. EX t t'. p=<t,t'> & (t = bot | SIM(t,t',R))}"
-  EQgen_def  "EQgen(R) == {p. EX t t'. p=<t,t'> & (t = bot & t' = bot | SIM(t,t',R))}"
-
-  PO_def    "PO == gfp(POgen)"
-  EQ_def    "EQ == gfp(EQgen)"
-
-  (*** Rules ***)
-
-  (** Partial Order **)
-
-  po_refl        "a [= a"
-  po_trans       "[| a [= b;  b [= c |] ==> a [= c"
-  po_cong        "a [= b ==> f(a) [= f(b)"
-
-  (* Extend definition of [= to program fragments of higher type *)
-  po_abstractn   "(!!x. f(x) [= g(x)) ==> (%x.f(x)) [= (%x.g(x))"
-
-  (** Equality - equivalence axioms inherited from FOL.thy   **)
-  (**          - congruence of "=" is axiomatised implicitly **)
-
-  eq_iff         "t = t' <-> t [= t' & t' [= t"
-
-  (** Properties of canonical values given by greatest fixed point definitions **)
- 
-  PO_iff         "t [= t' <-> <t,t'> : PO"
-  EQ_iff         "t =  t' <-> <t,t'> : EQ"
-
-  (** Behaviour of non-canonical terms (ie case) given by the following beta-rules **)
-
-  caseBtrue            "case(true,d,e,f,g) = d"
-  caseBfalse          "case(false,d,e,f,g) = e"
-  caseBpair           "case(<a,b>,d,e,f,g) = f(a,b)"
-  caseBlam       "case(lam x.b(x),d,e,f,g) = g(b)"
-  caseBbot              "case(bot,d,e,f,g) = bot"            (* strictness *)
-
-  (** The theory is non-trivial **)
-  distinctness   "~ lam x.b(x) = bot"
-
-  (*** Definitions of Termination and Divergence ***)
-
-  Dvg_def  "Dvg(t) == t = bot"
-  Trm_def  "Trm(t) == ~ Dvg(t)"
-
-end
-
-
-(*
-Would be interesting to build a similar theory for a typed programming language:
-    ie.     true :: bool,      fix :: ('a=>'a)=>'a  etc......
-
-This is starting to look like LCF.
-What are the advantages of this approach?   
-        - less axiomatic                                            
-        - wfd induction / coinduction and fixed point induction available
-           
-*)