src/HOLCF/UpperPD.thy
changeset 25904 8161f137b0e9
child 25925 3dc4acca4388
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/UpperPD.thy	Mon Jan 14 19:26:41 2008 +0100
@@ -0,0 +1,508 @@
+(*  Title:      HOLCF/UpperPD.thy
+    ID:         $Id$
+    Author:     Brian Huffman
+*)
+
+header {* Upper powerdomain *}
+
+theory UpperPD
+imports CompactBasis
+begin
+
+subsection {* Basis preorder *}
+
+definition
+  upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where
+  "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. compact_le x y)"
+
+lemma upper_le_refl [simp]: "t \<le>\<sharp> t"
+unfolding upper_le_def by (fast intro: compact_le_refl)
+
+lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v"
+unfolding upper_le_def
+apply (rule ballI)
+apply (drule (1) bspec, erule bexE)
+apply (drule (1) bspec, erule bexE)
+apply (erule rev_bexI)
+apply (erule (1) compact_le_trans)
+done
+
+interpretation upper_le: preorder [upper_le]
+by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
+
+lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
+unfolding upper_le_def Rep_PDUnit by simp
+
+lemma PDUnit_upper_mono: "compact_le x y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y"
+unfolding upper_le_def Rep_PDUnit by simp
+
+lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v"
+unfolding upper_le_def Rep_PDPlus by fast
+
+lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t"
+unfolding upper_le_def Rep_PDPlus by (fast intro: compact_le_refl)
+
+lemma upper_le_PDUnit_PDUnit_iff [simp]:
+  "(PDUnit a \<le>\<sharp> PDUnit b) = compact_le a b"
+unfolding upper_le_def Rep_PDUnit by fast
+
+lemma upper_le_PDPlus_PDUnit_iff:
+  "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)"
+unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
+
+lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)"
+unfolding upper_le_def Rep_PDPlus by fast
+
+lemma upper_le_induct [induct set: upper_le]:
+  assumes le: "t \<le>\<sharp> u"
+  assumes 1: "\<And>a b. compact_le a b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
+  assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)"
+  assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)"
+  shows "P t u"
+using le apply (induct u arbitrary: t rule: pd_basis_induct)
+apply (erule rev_mp)
+apply (induct_tac t rule: pd_basis_induct)
+apply (simp add: 1)
+apply (simp add: upper_le_PDPlus_PDUnit_iff)
+apply (simp add: 2)
+apply (subst PDPlus_commute)
+apply (simp add: 2)
+apply (simp add: upper_le_PDPlus_iff 3)
+done
+
+lemma approx_pd_upper_mono1:
+  "i \<le> j \<Longrightarrow> approx_pd i t \<le>\<sharp> approx_pd j t"
+apply (induct t rule: pd_basis_induct)
+apply (simp add: compact_approx_mono1)
+apply (simp add: PDPlus_upper_mono)
+done
+
+lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t"
+apply (induct t rule: pd_basis_induct)
+apply (simp add: compact_approx_le)
+apply (simp add: PDPlus_upper_mono)
+done
+
+lemma approx_pd_upper_mono:
+  "t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u"
+apply (erule upper_le_induct)
+apply (simp add: compact_approx_mono)
+apply (simp add: upper_le_PDPlus_PDUnit_iff)
+apply (simp add: upper_le_PDPlus_iff)
+done
+
+
+subsection {* Type definition *}
+
+cpodef (open) 'a upper_pd =
+  "{S::'a::bifinite pd_basis set. upper_le.ideal S}"
+apply (simp add: upper_le.adm_ideal)
+apply (fast intro: upper_le.ideal_principal)
+done
+
+lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)"
+by (rule Rep_upper_pd [simplified])
+
+definition
+  upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where
+  "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
+
+lemma Rep_upper_principal:
+  "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
+unfolding upper_principal_def
+apply (rule Abs_upper_pd_inverse [simplified])
+apply (rule upper_le.ideal_principal)
+done
+
+interpretation upper_pd:
+  bifinite_basis [upper_le upper_principal Rep_upper_pd approx_pd]
+apply unfold_locales
+apply (rule ideal_Rep_upper_pd)
+apply (rule cont_Rep_upper_pd)
+apply (rule Rep_upper_principal)
+apply (simp only: less_upper_pd_def less_set_def)
+apply (rule approx_pd_upper_le)
+apply (rule approx_pd_idem)
+apply (erule approx_pd_upper_mono)
+apply (rule approx_pd_upper_mono1, simp)
+apply (rule finite_range_approx_pd)
+apply (rule ex_approx_pd_eq)
+done
+
+lemma upper_principal_less_iff [simp]:
+  "(upper_principal t \<sqsubseteq> upper_principal u) = (t \<le>\<sharp> u)"
+unfolding less_upper_pd_def Rep_upper_principal less_set_def
+by (fast intro: upper_le_refl elim: upper_le_trans)
+
+lemma upper_principal_mono:
+  "t \<le>\<sharp> u \<Longrightarrow> upper_principal t \<sqsubseteq> upper_principal u"
+by (rule upper_pd.principal_mono)
+
+lemma compact_upper_principal: "compact (upper_principal t)"
+by (rule upper_pd.compact_principal)
+
+lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
+by (induct ys rule: upper_pd.principal_induct, simp, simp)
+
+instance upper_pd :: (bifinite) pcpo
+by (intro_classes, fast intro: upper_pd_minimal)
+
+lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
+by (rule upper_pd_minimal [THEN UU_I, symmetric])
+
+
+subsection {* Approximation *}
+
+instance upper_pd :: (bifinite) approx ..
+
+defs (overloaded)
+  approx_upper_pd_def:
+    "approx \<equiv> (\<lambda>n. upper_pd.basis_fun (\<lambda>t. upper_principal (approx_pd n t)))"
+
+lemma approx_upper_principal [simp]:
+  "approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)"
+unfolding approx_upper_pd_def
+apply (rule upper_pd.basis_fun_principal)
+apply (erule upper_principal_mono [OF approx_pd_upper_mono])
+done
+
+lemma chain_approx_upper_pd:
+  "chain (approx :: nat \<Rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd)"
+unfolding approx_upper_pd_def
+by (rule upper_pd.chain_basis_fun_take)
+
+lemma lub_approx_upper_pd:
+  "(\<Squnion>i. approx i\<cdot>xs) = (xs::'a upper_pd)"
+unfolding approx_upper_pd_def
+by (rule upper_pd.lub_basis_fun_take)
+
+lemma approx_upper_pd_idem:
+  "approx n\<cdot>(approx n\<cdot>xs) = approx n\<cdot>(xs::'a upper_pd)"
+apply (induct xs rule: upper_pd.principal_induct, simp)
+apply (simp add: approx_pd_idem)
+done
+
+lemma approx_eq_upper_principal:
+  "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (approx_pd n t)"
+unfolding approx_upper_pd_def
+by (rule upper_pd.basis_fun_take_eq_principal)
+
+lemma finite_fixes_approx_upper_pd:
+  "finite {xs::'a upper_pd. approx n\<cdot>xs = xs}"
+unfolding approx_upper_pd_def
+by (rule upper_pd.finite_fixes_basis_fun_take)
+
+instance upper_pd :: (bifinite) bifinite
+apply intro_classes
+apply (simp add: chain_approx_upper_pd)
+apply (rule lub_approx_upper_pd)
+apply (rule approx_upper_pd_idem)
+apply (rule finite_fixes_approx_upper_pd)
+done
+
+lemma compact_imp_upper_principal:
+  "compact xs \<Longrightarrow> \<exists>t. xs = upper_principal t"
+apply (drule bifinite_compact_eq_approx)
+apply (erule exE)
+apply (erule subst)
+apply (cut_tac n=i and xs=xs in approx_eq_upper_principal)
+apply fast
+done
+
+lemma upper_principal_induct:
+  "\<lbrakk>adm P; \<And>t. P (upper_principal t)\<rbrakk> \<Longrightarrow> P xs"
+apply (erule approx_induct, rename_tac xs)
+apply (cut_tac n=n and xs=xs in approx_eq_upper_principal)
+apply (clarify, simp)
+done
+
+lemma upper_principal_induct2:
+  "\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys);
+    \<And>t u. P (upper_principal t) (upper_principal u)\<rbrakk> \<Longrightarrow> P xs ys"
+apply (rule_tac x=ys in spec)
+apply (rule_tac xs=xs in upper_principal_induct, simp)
+apply (rule allI, rename_tac ys)
+apply (rule_tac xs=ys in upper_principal_induct, simp)
+apply simp
+done
+
+
+subsection {* Monadic unit *}
+
+definition
+  upper_unit :: "'a \<rightarrow> 'a upper_pd" where
+  "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))"
+
+lemma upper_unit_Rep_compact_basis [simp]:
+  "upper_unit\<cdot>(Rep_compact_basis a) = upper_principal (PDUnit a)"
+unfolding upper_unit_def
+apply (rule compact_basis.basis_fun_principal)
+apply (rule upper_principal_mono)
+apply (erule PDUnit_upper_mono)
+done
+
+lemma upper_unit_strict [simp]: "upper_unit\<cdot>\<bottom> = \<bottom>"
+unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp
+
+lemma approx_upper_unit [simp]:
+  "approx n\<cdot>(upper_unit\<cdot>x) = upper_unit\<cdot>(approx n\<cdot>x)"
+apply (induct x rule: compact_basis_induct, simp)
+apply (simp add: approx_Rep_compact_basis)
+done
+
+lemma upper_unit_less_iff [simp]:
+  "(upper_unit\<cdot>x \<sqsubseteq> upper_unit\<cdot>y) = (x \<sqsubseteq> y)"
+ apply (rule iffI)
+  apply (rule bifinite_less_ext)
+  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
+  apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp)
+  apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp)
+  apply (clarify, simp add: compact_le_def)
+ apply (erule monofun_cfun_arg)
+done
+
+lemma upper_unit_eq_iff [simp]:
+  "(upper_unit\<cdot>x = upper_unit\<cdot>y) = (x = y)"
+unfolding po_eq_conv by simp
+
+lemma upper_unit_strict_iff [simp]: "(upper_unit\<cdot>x = \<bottom>) = (x = \<bottom>)"
+unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
+
+lemma compact_upper_unit_iff [simp]:
+  "compact (upper_unit\<cdot>x) = compact x"
+unfolding bifinite_compact_iff by simp
+
+
+subsection {* Monadic plus *}
+
+definition
+  upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where
+  "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u.
+      upper_principal (PDPlus t u)))"
+
+abbreviation
+  upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd"
+    (infixl "+\<sharp>" 65) where
+  "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys"
+
+lemma upper_plus_principal [simp]:
+  "upper_plus\<cdot>(upper_principal t)\<cdot>(upper_principal u) =
+   upper_principal (PDPlus t u)"
+unfolding upper_plus_def
+by (simp add: upper_pd.basis_fun_principal
+    upper_pd.basis_fun_mono PDPlus_upper_mono)
+
+lemma approx_upper_plus [simp]:
+  "approx n\<cdot>(upper_plus\<cdot>xs\<cdot>ys) = upper_plus\<cdot>(approx n\<cdot>xs)\<cdot>(approx n\<cdot>ys)"
+by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)
+
+lemma upper_plus_commute: "upper_plus\<cdot>xs\<cdot>ys = upper_plus\<cdot>ys\<cdot>xs"
+apply (induct xs ys rule: upper_principal_induct2, simp, simp)
+apply (simp add: PDPlus_commute)
+done
+
+lemma upper_plus_assoc:
+  "upper_plus\<cdot>(upper_plus\<cdot>xs\<cdot>ys)\<cdot>zs = upper_plus\<cdot>xs\<cdot>(upper_plus\<cdot>ys\<cdot>zs)"
+apply (induct xs ys arbitrary: zs rule: upper_principal_induct2, simp, simp)
+apply (rule_tac xs=zs in upper_principal_induct, simp)
+apply (simp add: PDPlus_assoc)
+done
+
+lemma upper_plus_absorb: "upper_plus\<cdot>xs\<cdot>xs = xs"
+apply (induct xs rule: upper_principal_induct, simp)
+apply (simp add: PDPlus_absorb)
+done
+
+lemma upper_plus_less1: "upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> xs"
+apply (induct xs ys rule: upper_principal_induct2, simp, simp)
+apply (simp add: PDPlus_upper_less)
+done
+
+lemma upper_plus_less2: "upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> ys"
+by (subst upper_plus_commute, rule upper_plus_less1)
+
+lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> upper_plus\<cdot>ys\<cdot>zs"
+apply (subst upper_plus_absorb [of xs, symmetric])
+apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
+done
+
+lemma upper_less_plus_iff:
+  "(xs \<sqsubseteq> upper_plus\<cdot>ys\<cdot>zs) = (xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs)"
+apply safe
+apply (erule trans_less [OF _ upper_plus_less1])
+apply (erule trans_less [OF _ upper_plus_less2])
+apply (erule (1) upper_plus_greatest)
+done
+
+lemma upper_plus_strict1 [simp]: "upper_plus\<cdot>\<bottom>\<cdot>ys = \<bottom>"
+by (rule UU_I, rule upper_plus_less1)
+
+lemma upper_plus_strict2 [simp]: "upper_plus\<cdot>xs\<cdot>\<bottom> = \<bottom>"
+by (rule UU_I, rule upper_plus_less2)
+
+lemma upper_plus_less_unit_iff:
+  "(upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> upper_unit\<cdot>z) =
+    (xs \<sqsubseteq> upper_unit\<cdot>z \<or> ys \<sqsubseteq> upper_unit\<cdot>z)"
+ apply (rule iffI)
+  apply (subgoal_tac
+    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>(upper_unit\<cdot>z) \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>(upper_unit\<cdot>z))")
+   apply (drule admD [rule_format], rule chain_approx)
+    apply (drule_tac f="approx i" in monofun_cfun_arg)
+    apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_upper_principal, simp)
+    apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_upper_principal, simp)
+    apply (cut_tac x="approx i\<cdot>z" in compact_imp_Rep_compact_basis, simp)
+    apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff)
+   apply simp
+  apply simp
+ apply (erule disjE)
+  apply (erule trans_less [OF upper_plus_less1])
+ apply (erule trans_less [OF upper_plus_less2])
+done
+
+lemmas upper_pd_less_simps =
+  upper_unit_less_iff
+  upper_less_plus_iff
+  upper_plus_less_unit_iff
+
+
+subsection {* Induction rules *}
+
+lemma upper_pd_induct1:
+  assumes P: "adm P"
+  assumes unit: "\<And>x. P (upper_unit\<cdot>x)"
+  assumes insert:
+    "\<And>x ys. \<lbrakk>P (upper_unit\<cdot>x); P ys\<rbrakk> \<Longrightarrow> P (upper_plus\<cdot>(upper_unit\<cdot>x)\<cdot>ys)"
+  shows "P (xs::'a upper_pd)"
+apply (induct xs rule: upper_principal_induct, rule P)
+apply (induct_tac t rule: pd_basis_induct1)
+apply (simp only: upper_unit_Rep_compact_basis [symmetric])
+apply (rule unit)
+apply (simp only: upper_unit_Rep_compact_basis [symmetric]
+                  upper_plus_principal [symmetric])
+apply (erule insert [OF unit])
+done
+
+lemma upper_pd_induct:
+  assumes P: "adm P"
+  assumes unit: "\<And>x. P (upper_unit\<cdot>x)"
+  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (upper_plus\<cdot>xs\<cdot>ys)"
+  shows "P (xs::'a upper_pd)"
+apply (induct xs rule: upper_principal_induct, rule P)
+apply (induct_tac t rule: pd_basis_induct)
+apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
+apply (simp only: upper_plus_principal [symmetric] plus)
+done
+
+
+subsection {* Monadic bind *}
+
+definition
+  upper_bind_basis ::
+  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
+  "upper_bind_basis = fold_pd
+    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
+    (\<lambda>x y. \<Lambda> f. upper_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))"
+
+lemma ACI_upper_bind: "ACIf (\<lambda>x y. \<Lambda> f. upper_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))"
+apply unfold_locales
+apply (simp add: upper_plus_commute)
+apply (simp add: upper_plus_assoc)
+apply (simp add: upper_plus_absorb eta_cfun)
+done
+
+lemma upper_bind_basis_simps [simp]:
+  "upper_bind_basis (PDUnit a) =
+    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
+  "upper_bind_basis (PDPlus t u) =
+    (\<Lambda> f. upper_plus\<cdot>(upper_bind_basis t\<cdot>f)\<cdot>(upper_bind_basis u\<cdot>f))"
+unfolding upper_bind_basis_def
+apply -
+apply (rule ACIf.fold_pd_PDUnit [OF ACI_upper_bind])
+apply (rule ACIf.fold_pd_PDPlus [OF ACI_upper_bind])
+done
+
+lemma upper_bind_basis_mono:
+  "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
+unfolding expand_cfun_less
+apply (erule upper_le_induct, safe)
+apply (simp add: compact_le_def monofun_cfun)
+apply (simp add: trans_less [OF upper_plus_less1])
+apply (simp add: upper_less_plus_iff)
+done
+
+definition
+  upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
+  "upper_bind = upper_pd.basis_fun upper_bind_basis"
+
+lemma upper_bind_principal [simp]:
+  "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t"
+unfolding upper_bind_def
+apply (rule upper_pd.basis_fun_principal)
+apply (erule upper_bind_basis_mono)
+done
+
+lemma upper_bind_unit [simp]:
+  "upper_bind\<cdot>(upper_unit\<cdot>x)\<cdot>f = f\<cdot>x"
+by (induct x rule: compact_basis_induct, simp, simp)
+
+lemma upper_bind_plus [simp]:
+  "upper_bind\<cdot>(upper_plus\<cdot>xs\<cdot>ys)\<cdot>f =
+   upper_plus\<cdot>(upper_bind\<cdot>xs\<cdot>f)\<cdot>(upper_bind\<cdot>ys\<cdot>f)"
+by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)
+
+lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
+unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
+
+
+subsection {* Map and join *}
+
+definition
+  upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
+  "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_unit\<cdot>(f\<cdot>x)))"
+
+definition
+  upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
+  "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
+
+lemma upper_map_unit [simp]:
+  "upper_map\<cdot>f\<cdot>(upper_unit\<cdot>x) = upper_unit\<cdot>(f\<cdot>x)"
+unfolding upper_map_def by simp
+
+lemma upper_map_plus [simp]:
+  "upper_map\<cdot>f\<cdot>(upper_plus\<cdot>xs\<cdot>ys) =
+   upper_plus\<cdot>(upper_map\<cdot>f\<cdot>xs)\<cdot>(upper_map\<cdot>f\<cdot>ys)"
+unfolding upper_map_def by simp
+
+lemma upper_join_unit [simp]:
+  "upper_join\<cdot>(upper_unit\<cdot>xs) = xs"
+unfolding upper_join_def by simp
+
+lemma upper_join_plus [simp]:
+  "upper_join\<cdot>(upper_plus\<cdot>xss\<cdot>yss) =
+   upper_plus\<cdot>(upper_join\<cdot>xss)\<cdot>(upper_join\<cdot>yss)"
+unfolding upper_join_def by simp
+
+lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
+by (induct xs rule: upper_pd_induct, simp_all)
+
+lemma upper_map_map:
+  "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
+by (induct xs rule: upper_pd_induct, simp_all)
+
+lemma upper_join_map_unit:
+  "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
+by (induct xs rule: upper_pd_induct, simp_all)
+
+lemma upper_join_map_join:
+  "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
+by (induct xsss rule: upper_pd_induct, simp_all)
+
+lemma upper_join_map_map:
+  "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
+   upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
+by (induct xss rule: upper_pd_induct, simp_all)
+
+lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
+by (induct xs rule: upper_pd_induct, simp_all)
+
+end