src/LCF/LCF.thy
changeset 17248 81bf91654e73
parent 3837 d7f033c74b38
child 17249 e89fbfd778c1
--- a/src/LCF/LCF.thy	Sat Sep 03 17:54:07 2005 +0200
+++ b/src/LCF/LCF.thy	Sat Sep 03 17:54:10 2005 +0200
@@ -2,29 +2,38 @@
     ID:         $Id$
     Author:     Tobias Nipkow
     Copyright   1992  University of Cambridge
-
-Natural Deduction Rules for LCF
 *)
 
-LCF = FOL +
+header {* LCF on top of First-Order Logic *}
 
-classes cpo < term
+theory LCF
+imports FOL
+uses ("pair.ML") ("fix.ML")
+begin
 
-default cpo
+text {* This theory is based on Lawrence Paulson's book Logic and Computation. *}
 
-types
- tr
- void
- ('a,'b) "*"            (infixl 6)
- ('a,'b) "+"            (infixl 5)
+subsection {* Natural Deduction Rules for LCF *}
+
+classes cpo < "term"
+defaultsort cpo
+
+typedecl tr
+typedecl void
+typedecl ('a,'b) "*"    (infixl 6)
+typedecl ('a,'b) "+"    (infixl 5)
 
 arities
- fun, "*", "+" :: (cpo,cpo)cpo
- tr,void       :: cpo
+  fun :: (cpo, cpo) cpo
+  "*" :: (cpo, cpo) cpo
+  "+" :: (cpo, cpo) cpo
+  tr :: cpo
+  void :: cpo
 
 consts
  UU     :: "'a"
- TT,FF  :: "tr"
+ TT     :: "tr"
+ FF     :: "tr"
  FIX    :: "('a => 'a) => 'a"
  FST    :: "'a*'b => 'a"
  SND    :: "'a*'b => 'b"
@@ -36,75 +45,91 @@
  PAIR   :: "['a,'b] => 'a*'b"   ("(1<_,/_>)" [0,0] 100)
  COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
  "<<"   :: "['a,'a] => o"       (infixl 50)
-rules
+
+axioms
   (** DOMAIN THEORY **)
 
-  eq_def        "x=y == x << y & y << x"
+  eq_def:        "x=y == x << y & y << x"
 
-  less_trans    "[| x << y; y << z |] ==> x << z"
+  less_trans:    "[| x << y; y << z |] ==> x << z"
 
-  less_ext      "(ALL x. f(x) << g(x)) ==> f << g"
+  less_ext:      "(ALL x. f(x) << g(x)) ==> f << g"
 
-  mono          "[| f << g; x << y |] ==> f(x) << g(y)"
+  mono:          "[| f << g; x << y |] ==> f(x) << g(y)"
 
-  minimal       "UU << x"
+  minimal:       "UU << x"
 
-  FIX_eq        "f(FIX(f)) = FIX(f)"
+  FIX_eq:        "f(FIX(f)) = FIX(f)"
 
   (** TR **)
 
-  tr_cases      "p=UU | p=TT | p=FF"
+  tr_cases:      "p=UU | p=TT | p=FF"
 
-  not_TT_less_FF "~ TT << FF"
-  not_FF_less_TT "~ FF << TT"
-  not_TT_less_UU "~ TT << UU"
-  not_FF_less_UU "~ FF << UU"
+  not_TT_less_FF: "~ TT << FF"
+  not_FF_less_TT: "~ FF << TT"
+  not_TT_less_UU: "~ TT << UU"
+  not_FF_less_UU: "~ FF << UU"
 
-  COND_UU       "UU => x | y  =  UU"
-  COND_TT       "TT => x | y  =  x"
-  COND_FF       "FF => x | y  =  y"
+  COND_UU:       "UU => x | y  =  UU"
+  COND_TT:       "TT => x | y  =  x"
+  COND_FF:       "FF => x | y  =  y"
 
   (** PAIRS **)
 
-  surj_pairing  "<FST(z),SND(z)> = z"
+  surj_pairing:  "<FST(z),SND(z)> = z"
 
-  FST   "FST(<x,y>) = x"
-  SND   "SND(<x,y>) = y"
+  FST:   "FST(<x,y>) = x"
+  SND:   "SND(<x,y>) = y"
 
   (*** STRICT SUM ***)
 
-  INL_DEF "~x=UU ==> ~INL(x)=UU"
-  INR_DEF "~x=UU ==> ~INR(x)=UU"
+  INL_DEF: "~x=UU ==> ~INL(x)=UU"
+  INR_DEF: "~x=UU ==> ~INR(x)=UU"
 
-  INL_STRICT "INL(UU) = UU"
-  INR_STRICT "INR(UU) = UU"
+  INL_STRICT: "INL(UU) = UU"
+  INR_STRICT: "INR(UU) = UU"
 
-  WHEN_UU  "WHEN(f,g,UU) = UU"
-  WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
-  WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
+  WHEN_UU:  "WHEN(f,g,UU) = UU"
+  WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
+  WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
 
-  SUM_EXHAUSTION
+  SUM_EXHAUSTION:
     "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
 
   (** VOID **)
 
-  void_cases    "(x::void) = UU"
+  void_cases:    "(x::void) = UU"
 
   (** INDUCTION **)
 
-  induct        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
+  induct:        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
 
   (** Admissibility / Chain Completeness **)
   (* All rules can be found on pages 199--200 of Larry's LCF book.
      Note that "easiness" of types is not taken into account
      because it cannot be expressed schematically; flatness could be. *)
 
-  adm_less      "adm(%x. t(x) << u(x))"
-  adm_not_less  "adm(%x.~ t(x) << u)"
-  adm_not_free  "adm(%x. A)"
-  adm_subst     "adm(P) ==> adm(%x. P(t(x)))"
-  adm_conj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
-  adm_disj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
-  adm_imp       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
-  adm_all       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
+  adm_less:      "adm(%x. t(x) << u(x))"
+  adm_not_less:  "adm(%x.~ t(x) << u)"
+  adm_not_free:  "adm(%x. A)"
+  adm_subst:     "adm(P) ==> adm(%x. P(t(x)))"
+  adm_conj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
+  adm_disj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
+  adm_imp:       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
+  adm_all:       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
+
+ML {* use_legacy_bindings (the_context ()) *}
+
+use "LCF_lemmas.ML"
+
+
+subsection {* Ordered pairs and products *}
+
+use "pair.ML"
+
+
+subsection {* Fixedpoint theory *}
+
+use "fix.ML"
+
 end