src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML
changeset 55202 824c48a539c9
parent 55194 daa64e603e70
child 55211 5d027af93a08
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML	Fri Jan 31 10:23:32 2014 +0100
@@ -0,0 +1,423 @@
+(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_isar.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Author:     Steffen Juilf Smolka, TU Muenchen
+
+Isar proof reconstruction from ATP proofs.
+*)
+
+signature SLEDGEHAMMER_ISAR =
+sig
+  type atp_step_name = ATP_Proof.atp_step_name
+  type ('a, 'b) atp_step = ('a, 'b) ATP_Proof.atp_step
+  type 'a atp_proof = 'a ATP_Proof.atp_proof
+  type stature = ATP_Problem_Generate.stature
+  type one_line_params = Sledgehammer_Reconstructor.one_line_params
+
+  type isar_params =
+    bool * string * string * Time.time * real * bool * (term, string) atp_step list * thm
+
+  val proof_text : Proof.context -> bool -> bool option -> (unit -> isar_params) -> int ->
+    one_line_params -> string
+end;
+
+structure Sledgehammer_Isar : SLEDGEHAMMER_ISAR =
+struct
+
+open ATP_Util
+open ATP_Problem
+open ATP_Proof
+open ATP_Problem_Generate
+open ATP_Proof_Reconstruct
+open Sledgehammer_Util
+open Sledgehammer_Reconstructor
+open Sledgehammer_Isar_Proof
+open Sledgehammer_Isar_Annotate
+open Sledgehammer_Isar_Print
+open Sledgehammer_Isar_Preplay
+open Sledgehammer_Isar_Compress
+open Sledgehammer_Isar_Try0
+open Sledgehammer_Isar_Minimize
+
+structure String_Redirect = ATP_Proof_Redirect(
+  type key = atp_step_name
+  val ord = fn ((s, _ : string list), (s', _)) => fast_string_ord (s, s')
+  val string_of = fst)
+
+open String_Redirect
+
+val e_skolemize_rules = ["skolemize", "shift_quantors"]
+val spass_pirate_datatype_rule = "DT"
+val vampire_skolemisation_rule = "skolemisation"
+(* TODO: Use "Z3_Proof.string_of_rule" once it is moved to Isabelle *)
+val z3_skolemize_rule = "sk"
+val z3_th_lemma_rule = "th-lemma"
+
+val skolemize_rules =
+  e_skolemize_rules @ [spass_skolemize_rule, vampire_skolemisation_rule, z3_skolemize_rule]
+
+val is_skolemize_rule = member (op =) skolemize_rules
+val is_arith_rule = String.isPrefix z3_th_lemma_rule
+val is_datatype_rule = String.isPrefix spass_pirate_datatype_rule
+
+fun raw_label_of_num num = (num, 0)
+
+fun label_of_clause [(num, _)] = raw_label_of_num num
+  | label_of_clause c = (space_implode "___" (map (fst o raw_label_of_num o fst) c), 0)
+
+fun add_fact_of_dependencies [(_, ss as _ :: _)] = apsnd (union (op =) ss)
+  | add_fact_of_dependencies names = apfst (insert (op =) (label_of_clause names))
+
+(* No "real" literals means only type information (tfree_tcs, clsrel, or clsarity). *)
+fun is_only_type_information t = t aconv @{prop True}
+
+(* Discard facts; consolidate adjacent lines that prove the same formula, since they differ only in
+   type information. *)
+fun add_line_pass1 (line as (name, role, t, rule, [])) lines =
+    (* No dependencies: lemma (for Z3), fact, conjecture, or (for Vampire) internal facts or
+       definitions. *)
+    if role = Lemma orelse role = Conjecture orelse role = Negated_Conjecture orelse
+       role = Hypothesis orelse is_arith_rule rule then
+      line :: lines
+    else if role = Axiom then
+      (* Facts are not proof lines. *)
+      lines |> is_only_type_information t ? map (replace_dependencies_in_line (name, []))
+    else
+      map (replace_dependencies_in_line (name, [])) lines
+  | add_line_pass1 line lines = line :: lines
+
+fun add_lines_pass2 res [] = rev res
+  | add_lines_pass2 res ((name, role, t, rule, deps) :: lines) =
+    let
+      val is_last_line = null lines
+
+      fun looks_interesting () =
+        not (is_only_type_information t) andalso null (Term.add_tvars t [])
+        andalso length deps >= 2 andalso not (can the_single lines)
+
+      fun is_skolemizing_line (_, _, _, rule', deps') =
+        is_skolemize_rule rule' andalso member (op =) deps' name
+      fun is_before_skolemize_rule () = exists is_skolemizing_line lines
+    in
+      if role <> Plain orelse is_skolemize_rule rule orelse is_arith_rule rule orelse
+         is_datatype_rule rule orelse is_last_line orelse looks_interesting () orelse
+         is_before_skolemize_rule () then
+        add_lines_pass2 ((name, role, t, rule, deps) :: res) lines
+      else
+        add_lines_pass2 res (map (replace_dependencies_in_line (name, deps)) lines)
+    end
+
+val add_labels_of_proof =
+  steps_of_proof
+  #> fold_isar_steps (byline_of_step #> (fn SOME ((ls, _), _) => union (op =) ls | _ => I))
+
+fun kill_useless_labels_in_proof proof =
+  let
+    val used_ls = add_labels_of_proof proof []
+
+    fun kill_label l = if member (op =) used_ls l then l else no_label
+    fun kill_assms assms = map (apfst kill_label) assms
+
+    fun kill_step (Prove (qs, xs, l, t, subproofs, by)) =
+        Prove (qs, xs, kill_label l, t, map kill_proof subproofs, by)
+      | kill_step step = step
+    and kill_proof (Proof (fix, assms, steps)) =
+      Proof (fix, kill_assms assms, map kill_step steps)
+  in
+    kill_proof proof
+  end
+
+val assume_prefix = "a"
+val have_prefix = "f"
+
+val relabel_proof =
+  let
+    fun fresh_label depth prefix (accum as (l, subst, next)) =
+      if l = no_label then
+        accum
+      else
+        let val l' = (replicate_string (depth + 1) prefix, next) in
+          (l', (l, l') :: subst, next + 1)
+        end
+
+    fun relabel_facts subst = apfst (maps (the_list o AList.lookup (op =) subst))
+
+    fun relabel_assm depth (l, t) (subst, next) =
+      let val (l, subst, next) = (l, subst, next) |> fresh_label depth assume_prefix in
+        ((l, t), (subst, next))
+      end
+
+    fun relabel_assms subst depth assms = fold_map (relabel_assm depth) assms (subst, 1) ||> fst
+
+    fun relabel_steps _ _ _ [] = []
+      | relabel_steps subst depth next (Prove (qs, xs, l, t, sub, by) :: steps) =
+        let
+          val (l, subst, next) = (l, subst, next) |> fresh_label depth have_prefix
+          val sub = relabel_proofs subst depth sub
+          val by = apfst (relabel_facts subst) by
+        in
+          Prove (qs, xs, l, t, sub, by) :: relabel_steps subst depth next steps
+        end
+      | relabel_steps subst depth next (step :: steps) =
+        step :: relabel_steps subst depth next steps
+    and relabel_proof subst depth (Proof (fix, assms, steps)) =
+      let val (assms, subst) = relabel_assms subst depth assms in
+        Proof (fix, assms, relabel_steps subst depth 1 steps)
+      end
+    and relabel_proofs subst depth = map (relabel_proof subst (depth + 1))
+  in
+    relabel_proof [] 0
+  end
+
+val chain_direct_proof =
+  let
+    fun chain_qs_lfs NONE lfs = ([], lfs)
+      | chain_qs_lfs (SOME l0) lfs =
+        if member (op =) lfs l0 then ([Then], lfs |> remove (op =) l0) else ([], lfs)
+    fun chain_step lbl (Prove (qs, xs, l, t, subproofs, ((lfs, gfs), methss))) =
+        let val (qs', lfs) = chain_qs_lfs lbl lfs in
+          Prove (qs' @ qs, xs, l, t, chain_proofs subproofs, ((lfs, gfs), methss))
+        end
+      | chain_step _ step = step
+    and chain_steps _ [] = []
+      | chain_steps (prev as SOME _) (i :: is) =
+        chain_step prev i :: chain_steps (label_of_step i) is
+      | chain_steps _ (i :: is) = i :: chain_steps (label_of_step i) is
+    and chain_proof (Proof (fix, assms, steps)) =
+      Proof (fix, assms, chain_steps (try (List.last #> fst) assms) steps)
+    and chain_proofs proofs = map (chain_proof) proofs
+  in
+    chain_proof
+  end
+
+type isar_params =
+  bool * string * string * Time.time * real * bool * (term, string) atp_step list * thm
+
+val arith_methodss =
+  [[Arith_Method, Simp_Method, Auto_Method, Fastforce_Method, Blast_Method, Force_Method,
+    Metis_Method], [Meson_Method]]
+val datatype_methodss = [[Simp_Size_Method, Simp_Method]]
+val metislike_methodss =
+  [[Metis_Method, Simp_Method, Auto_Method, Arith_Method, Blast_Method, Fastforce_Method,
+    Force_Method], [Meson_Method]]
+val rewrite_methodss =
+  [[Auto_Method, Simp_Method, Fastforce_Method, Force_Method, Metis_Method], [Meson_Method]]
+val skolem_methodss = [[Metis_Method, Blast_Method], [Meson_Method]]
+
+fun isar_proof_text ctxt debug isar_proofs isar_params
+    (one_line_params as (_, _, _, _, subgoal, subgoal_count)) =
+  let
+    fun isar_proof_of () =
+      let
+        val SOME (verbose, metis_type_enc, metis_lam_trans, preplay_timeout, compress_isar,
+          try0_isar, atp_proof, goal) = try isar_params ()
+
+        val (params, _, concl_t) = strip_subgoal goal subgoal ctxt
+        val (_, ctxt) =
+          params
+          |> map (fn (s, T) => (Binding.name s, SOME T, NoSyn))
+          |> (fn fixes => ctxt |> Variable.set_body false |> Proof_Context.add_fixes fixes)
+
+        val do_preplay = preplay_timeout <> Time.zeroTime
+        val try0_isar = try0_isar andalso do_preplay
+
+        val is_fixed = Variable.is_declared ctxt orf can Name.dest_skolem
+        fun skolems_of t = Term.add_frees t [] |> filter_out (is_fixed o fst) |> rev
+
+        fun get_role keep_role ((num, _), role, t, rule, _) =
+          if keep_role role then SOME ((raw_label_of_num num, t), rule) else NONE
+
+        val atp_proof =
+          atp_proof
+          |> rpair [] |-> fold_rev add_line_pass1
+          |> add_lines_pass2 []
+
+        val conjs =
+          map_filter (fn (name, role, _, _, _) =>
+              if member (op =) [Conjecture, Negated_Conjecture] role then SOME name else NONE)
+            atp_proof
+        val assms = map_filter (Option.map fst o get_role (curry (op =) Hypothesis)) atp_proof
+        val lems =
+          map_filter (get_role (curry (op =) Lemma)) atp_proof
+          |> map (fn ((l, t), rule) =>
+            let
+              val (skos, methss) =
+                if is_skolemize_rule rule then (skolems_of t, skolem_methodss)
+                else if is_arith_rule rule then ([], arith_methodss)
+                else ([], rewrite_methodss)
+            in
+              Prove ([], skos, l, t, [], (([], []), methss))
+            end)
+
+        val bot = atp_proof |> List.last |> #1
+
+        val refute_graph =
+          atp_proof
+          |> map (fn (name, _, _, _, from) => (from, name))
+          |> make_refute_graph bot
+          |> fold (Atom_Graph.default_node o rpair ()) conjs
+
+        val axioms = axioms_of_refute_graph refute_graph conjs
+
+        val tainted = tainted_atoms_of_refute_graph refute_graph conjs
+        val is_clause_tainted = exists (member (op =) tainted)
+        val steps =
+          Symtab.empty
+          |> fold (fn (name as (s, _), role, t, rule, _) =>
+              Symtab.update_new (s, (rule, t
+                |> (if is_clause_tainted [name] then
+                      HOLogic.dest_Trueprop
+                      #> role <> Conjecture ? s_not
+                      #> fold exists_of (map Var (Term.add_vars t []))
+                      #> HOLogic.mk_Trueprop
+                    else
+                      I))))
+            atp_proof
+
+        val rule_of_clause_id = fst o the o Symtab.lookup steps o fst
+
+        fun prop_of_clause [(num, _)] = Symtab.lookup steps num |> the |> snd |> close_form
+          | prop_of_clause names =
+            let
+              val lits = map (HOLogic.dest_Trueprop o snd)
+                (map_filter (Symtab.lookup steps o fst) names)
+            in
+              (case List.partition (can HOLogic.dest_not) lits of
+                (negs as _ :: _, pos as _ :: _) =>
+                s_imp (Library.foldr1 s_conj (map HOLogic.dest_not negs), Library.foldr1 s_disj pos)
+              | _ => fold (curry s_disj) lits @{term False})
+            end
+            |> HOLogic.mk_Trueprop |> close_form
+
+        fun maybe_show outer c = (outer andalso eq_set (op =) (c, conjs)) ? cons Show
+
+        fun isar_steps outer predecessor accum [] =
+            accum
+            |> (if tainted = [] then
+                  cons (Prove (if outer then [Show] else [], [], no_label, concl_t, [],
+                               ((the_list predecessor, []), metislike_methodss)))
+                else
+                  I)
+            |> rev
+          | isar_steps outer _ accum (Have (id, (gamma, c)) :: infs) =
+            let
+              val l = label_of_clause c
+              val t = prop_of_clause c
+              val rule = rule_of_clause_id id
+              val skolem = is_skolemize_rule rule
+
+              fun prove sub by = Prove (maybe_show outer c [], [], l, t, sub, by)
+              fun do_rest l step = isar_steps outer (SOME l) (step :: accum) infs
+
+              val deps = fold add_fact_of_dependencies gamma no_facts
+              val methss =
+                if is_arith_rule rule then arith_methodss
+                else if is_datatype_rule rule then datatype_methodss
+                else metislike_methodss
+              val by = (deps, methss)
+            in
+              if is_clause_tainted c then
+                (case gamma of
+                  [g] =>
+                  if skolem andalso is_clause_tainted g then
+                    let val subproof = Proof (skolems_of (prop_of_clause g), [], rev accum) in
+                      isar_steps outer (SOME l) [prove [subproof] (no_facts, skolem_methodss)] infs
+                    end
+                  else
+                    do_rest l (prove [] by)
+                | _ => do_rest l (prove [] by))
+              else
+                do_rest l (if skolem then Prove ([], skolems_of t, l, t, [], by) else prove [] by)
+            end
+          | isar_steps outer predecessor accum (Cases cases :: infs) =
+            let
+              fun isar_case (c, subinfs) =
+                isar_proof false [] [(label_of_clause c, prop_of_clause c)] [] subinfs
+              val c = succedent_of_cases cases
+              val l = label_of_clause c
+              val t = prop_of_clause c
+              val step =
+                Prove (maybe_show outer c [], [], l, t,
+                  map isar_case (filter_out (null o snd) cases),
+                  ((the_list predecessor, []), metislike_methodss))
+            in
+              isar_steps outer (SOME l) (step :: accum) infs
+            end
+        and isar_proof outer fix assms lems infs =
+          Proof (fix, assms, lems @ isar_steps outer NONE [] infs)
+
+        val (preplay_interface as {overall_preplay_outcome, ...}, isar_proof) =
+          refute_graph
+(*
+          |> tap (tracing o prefix "Refute graph: " o string_of_refute_graph)
+*)
+          |> redirect_graph axioms tainted bot
+(*
+          |> tap (tracing o prefix "Direct proof: " o string_of_direct_proof)
+*)
+          |> isar_proof true params assms lems
+          |> postprocess_remove_unreferenced_steps I
+          |> relabel_proof_canonically
+          |> `(proof_preplay_interface debug ctxt metis_type_enc metis_lam_trans do_preplay
+               preplay_timeout)
+
+        val (play_outcome, isar_proof) =
+          isar_proof
+          |> compress_proof (if isar_proofs = SOME true then compress_isar else 1000.0)
+               preplay_interface
+          |> try0_isar ? try0 preplay_timeout preplay_interface
+          |> postprocess_remove_unreferenced_steps (try0_isar ? min_deps_of_step preplay_interface)
+          |> `overall_preplay_outcome
+          ||> (chain_direct_proof #> kill_useless_labels_in_proof #> relabel_proof)
+
+        val isar_text =
+          string_of_proof ctxt metis_type_enc metis_lam_trans subgoal subgoal_count isar_proof
+      in
+        (case isar_text of
+          "" =>
+          if isar_proofs = SOME true then
+            "\nNo structured proof available (proof too simple)."
+          else
+            ""
+        | _ =>
+          let
+            val msg =
+              (if verbose then
+                let val num_steps = add_proof_steps (steps_of_proof isar_proof) 0 in
+                  [string_of_int num_steps ^ " step" ^ plural_s num_steps]
+                end
+               else
+                 []) @
+              (if do_preplay then [string_of_play_outcome play_outcome] else [])
+          in
+            "\n\nStructured proof" ^ (commas msg |> not (null msg) ? enclose " (" ")") ^ ":\n" ^
+            Active.sendback_markup [Markup.padding_command] isar_text
+          end)
+      end
+
+    val one_line_proof = one_line_proof_text 0 one_line_params
+    val isar_proof =
+      if debug then
+        isar_proof_of ()
+      else
+        (case try isar_proof_of () of
+          SOME s => s
+        | NONE =>
+          if isar_proofs = SOME true then "\nWarning: The Isar proof construction failed." else "")
+  in one_line_proof ^ isar_proof end
+
+fun isar_proof_would_be_a_good_idea (reconstr, play) =
+  (case play of
+    Played _ => reconstr = SMT
+  | Play_Timed_Out _ => true
+  | Play_Failed => true
+  | Not_Played => false)
+
+fun proof_text ctxt debug isar_proofs isar_params num_chained
+               (one_line_params as (preplay, _, _, _, _, _)) =
+  (if isar_proofs = SOME true orelse
+      (isar_proofs = NONE andalso isar_proof_would_be_a_good_idea preplay) then
+     isar_proof_text ctxt debug isar_proofs isar_params
+   else
+     one_line_proof_text num_chained) one_line_params
+
+end;