src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML
changeset 55202 824c48a539c9
parent 55201 1ee776da8da7
child 55203 e872d196a73b
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML	Fri Jan 31 10:23:32 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,423 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Author:     Steffen Juilf Smolka, TU Muenchen
-
-Isar proof reconstruction from ATP proofs.
-*)
-
-signature SLEDGEHAMMER_RECONSTRUCT =
-sig
-  type atp_step_name = ATP_Proof.atp_step_name
-  type ('a, 'b) atp_step = ('a, 'b) ATP_Proof.atp_step
-  type 'a atp_proof = 'a ATP_Proof.atp_proof
-  type stature = ATP_Problem_Generate.stature
-  type one_line_params = Sledgehammer_Reconstructor.one_line_params
-
-  type isar_params =
-    bool * string * string * Time.time * real * bool * (term, string) atp_step list * thm
-
-  val proof_text : Proof.context -> bool -> bool option -> (unit -> isar_params) -> int ->
-    one_line_params -> string
-end;
-
-structure Sledgehammer_Reconstruct : SLEDGEHAMMER_RECONSTRUCT =
-struct
-
-open ATP_Util
-open ATP_Problem
-open ATP_Proof
-open ATP_Problem_Generate
-open ATP_Proof_Reconstruct
-open Sledgehammer_Util
-open Sledgehammer_Reconstructor
-open Sledgehammer_Proof
-open Sledgehammer_Annotate
-open Sledgehammer_Print
-open Sledgehammer_Preplay
-open Sledgehammer_Compress
-open Sledgehammer_Try0
-open Sledgehammer_Minimize_Isar
-
-structure String_Redirect = ATP_Proof_Redirect(
-  type key = atp_step_name
-  val ord = fn ((s, _ : string list), (s', _)) => fast_string_ord (s, s')
-  val string_of = fst)
-
-open String_Redirect
-
-val e_skolemize_rules = ["skolemize", "shift_quantors"]
-val spass_pirate_datatype_rule = "DT"
-val vampire_skolemisation_rule = "skolemisation"
-(* TODO: Use "Z3_Proof.string_of_rule" once it is moved to Isabelle *)
-val z3_skolemize_rule = "sk"
-val z3_th_lemma_rule = "th-lemma"
-
-val skolemize_rules =
-  e_skolemize_rules @ [spass_skolemize_rule, vampire_skolemisation_rule, z3_skolemize_rule]
-
-val is_skolemize_rule = member (op =) skolemize_rules
-val is_arith_rule = String.isPrefix z3_th_lemma_rule
-val is_datatype_rule = String.isPrefix spass_pirate_datatype_rule
-
-fun raw_label_of_num num = (num, 0)
-
-fun label_of_clause [(num, _)] = raw_label_of_num num
-  | label_of_clause c = (space_implode "___" (map (fst o raw_label_of_num o fst) c), 0)
-
-fun add_fact_of_dependencies [(_, ss as _ :: _)] = apsnd (union (op =) ss)
-  | add_fact_of_dependencies names = apfst (insert (op =) (label_of_clause names))
-
-(* No "real" literals means only type information (tfree_tcs, clsrel, or clsarity). *)
-fun is_only_type_information t = t aconv @{prop True}
-
-(* Discard facts; consolidate adjacent lines that prove the same formula, since they differ only in
-   type information. *)
-fun add_line_pass1 (line as (name, role, t, rule, [])) lines =
-    (* No dependencies: lemma (for Z3), fact, conjecture, or (for Vampire) internal facts or
-       definitions. *)
-    if role = Lemma orelse role = Conjecture orelse role = Negated_Conjecture orelse
-       role = Hypothesis orelse is_arith_rule rule then
-      line :: lines
-    else if role = Axiom then
-      (* Facts are not proof lines. *)
-      lines |> is_only_type_information t ? map (replace_dependencies_in_line (name, []))
-    else
-      map (replace_dependencies_in_line (name, [])) lines
-  | add_line_pass1 line lines = line :: lines
-
-fun add_lines_pass2 res [] = rev res
-  | add_lines_pass2 res ((name, role, t, rule, deps) :: lines) =
-    let
-      val is_last_line = null lines
-
-      fun looks_interesting () =
-        not (is_only_type_information t) andalso null (Term.add_tvars t [])
-        andalso length deps >= 2 andalso not (can the_single lines)
-
-      fun is_skolemizing_line (_, _, _, rule', deps') =
-        is_skolemize_rule rule' andalso member (op =) deps' name
-      fun is_before_skolemize_rule () = exists is_skolemizing_line lines
-    in
-      if role <> Plain orelse is_skolemize_rule rule orelse is_arith_rule rule orelse
-         is_datatype_rule rule orelse is_last_line orelse looks_interesting () orelse
-         is_before_skolemize_rule () then
-        add_lines_pass2 ((name, role, t, rule, deps) :: res) lines
-      else
-        add_lines_pass2 res (map (replace_dependencies_in_line (name, deps)) lines)
-    end
-
-val add_labels_of_proof =
-  steps_of_proof
-  #> fold_isar_steps (byline_of_step #> (fn SOME ((ls, _), _) => union (op =) ls | _ => I))
-
-fun kill_useless_labels_in_proof proof =
-  let
-    val used_ls = add_labels_of_proof proof []
-
-    fun kill_label l = if member (op =) used_ls l then l else no_label
-    fun kill_assms assms = map (apfst kill_label) assms
-
-    fun kill_step (Prove (qs, xs, l, t, subproofs, by)) =
-        Prove (qs, xs, kill_label l, t, map kill_proof subproofs, by)
-      | kill_step step = step
-    and kill_proof (Proof (fix, assms, steps)) =
-      Proof (fix, kill_assms assms, map kill_step steps)
-  in
-    kill_proof proof
-  end
-
-val assume_prefix = "a"
-val have_prefix = "f"
-
-val relabel_proof =
-  let
-    fun fresh_label depth prefix (accum as (l, subst, next)) =
-      if l = no_label then
-        accum
-      else
-        let val l' = (replicate_string (depth + 1) prefix, next) in
-          (l', (l, l') :: subst, next + 1)
-        end
-
-    fun relabel_facts subst = apfst (maps (the_list o AList.lookup (op =) subst))
-
-    fun relabel_assm depth (l, t) (subst, next) =
-      let val (l, subst, next) = (l, subst, next) |> fresh_label depth assume_prefix in
-        ((l, t), (subst, next))
-      end
-
-    fun relabel_assms subst depth assms = fold_map (relabel_assm depth) assms (subst, 1) ||> fst
-
-    fun relabel_steps _ _ _ [] = []
-      | relabel_steps subst depth next (Prove (qs, xs, l, t, sub, by) :: steps) =
-        let
-          val (l, subst, next) = (l, subst, next) |> fresh_label depth have_prefix
-          val sub = relabel_proofs subst depth sub
-          val by = apfst (relabel_facts subst) by
-        in
-          Prove (qs, xs, l, t, sub, by) :: relabel_steps subst depth next steps
-        end
-      | relabel_steps subst depth next (step :: steps) =
-        step :: relabel_steps subst depth next steps
-    and relabel_proof subst depth (Proof (fix, assms, steps)) =
-      let val (assms, subst) = relabel_assms subst depth assms in
-        Proof (fix, assms, relabel_steps subst depth 1 steps)
-      end
-    and relabel_proofs subst depth = map (relabel_proof subst (depth + 1))
-  in
-    relabel_proof [] 0
-  end
-
-val chain_direct_proof =
-  let
-    fun chain_qs_lfs NONE lfs = ([], lfs)
-      | chain_qs_lfs (SOME l0) lfs =
-        if member (op =) lfs l0 then ([Then], lfs |> remove (op =) l0) else ([], lfs)
-    fun chain_step lbl (Prove (qs, xs, l, t, subproofs, ((lfs, gfs), methss))) =
-        let val (qs', lfs) = chain_qs_lfs lbl lfs in
-          Prove (qs' @ qs, xs, l, t, chain_proofs subproofs, ((lfs, gfs), methss))
-        end
-      | chain_step _ step = step
-    and chain_steps _ [] = []
-      | chain_steps (prev as SOME _) (i :: is) =
-        chain_step prev i :: chain_steps (label_of_step i) is
-      | chain_steps _ (i :: is) = i :: chain_steps (label_of_step i) is
-    and chain_proof (Proof (fix, assms, steps)) =
-      Proof (fix, assms, chain_steps (try (List.last #> fst) assms) steps)
-    and chain_proofs proofs = map (chain_proof) proofs
-  in
-    chain_proof
-  end
-
-type isar_params =
-  bool * string * string * Time.time * real * bool * (term, string) atp_step list * thm
-
-val arith_methodss =
-  [[Arith_Method, Simp_Method, Auto_Method, Fastforce_Method, Blast_Method, Force_Method,
-    Metis_Method], [Meson_Method]]
-val datatype_methodss = [[Simp_Size_Method, Simp_Method]]
-val metislike_methodss =
-  [[Metis_Method, Simp_Method, Auto_Method, Arith_Method, Blast_Method, Fastforce_Method,
-    Force_Method], [Meson_Method]]
-val rewrite_methodss =
-  [[Auto_Method, Simp_Method, Fastforce_Method, Force_Method, Metis_Method], [Meson_Method]]
-val skolem_methodss = [[Metis_Method, Blast_Method], [Meson_Method]]
-
-fun isar_proof_text ctxt debug isar_proofs isar_params
-    (one_line_params as (_, _, _, _, subgoal, subgoal_count)) =
-  let
-    fun isar_proof_of () =
-      let
-        val SOME (verbose, metis_type_enc, metis_lam_trans, preplay_timeout, compress_isar,
-          try0_isar, atp_proof, goal) = try isar_params ()
-
-        val (params, _, concl_t) = strip_subgoal goal subgoal ctxt
-        val (_, ctxt) =
-          params
-          |> map (fn (s, T) => (Binding.name s, SOME T, NoSyn))
-          |> (fn fixes => ctxt |> Variable.set_body false |> Proof_Context.add_fixes fixes)
-
-        val do_preplay = preplay_timeout <> Time.zeroTime
-        val try0_isar = try0_isar andalso do_preplay
-
-        val is_fixed = Variable.is_declared ctxt orf can Name.dest_skolem
-        fun skolems_of t = Term.add_frees t [] |> filter_out (is_fixed o fst) |> rev
-
-        fun get_role keep_role ((num, _), role, t, rule, _) =
-          if keep_role role then SOME ((raw_label_of_num num, t), rule) else NONE
-
-        val atp_proof =
-          atp_proof
-          |> rpair [] |-> fold_rev add_line_pass1
-          |> add_lines_pass2 []
-
-        val conjs =
-          map_filter (fn (name, role, _, _, _) =>
-              if member (op =) [Conjecture, Negated_Conjecture] role then SOME name else NONE)
-            atp_proof
-        val assms = map_filter (Option.map fst o get_role (curry (op =) Hypothesis)) atp_proof
-        val lems =
-          map_filter (get_role (curry (op =) Lemma)) atp_proof
-          |> map (fn ((l, t), rule) =>
-            let
-              val (skos, methss) =
-                if is_skolemize_rule rule then (skolems_of t, skolem_methodss)
-                else if is_arith_rule rule then ([], arith_methodss)
-                else ([], rewrite_methodss)
-            in
-              Prove ([], skos, l, t, [], (([], []), methss))
-            end)
-
-        val bot = atp_proof |> List.last |> #1
-
-        val refute_graph =
-          atp_proof
-          |> map (fn (name, _, _, _, from) => (from, name))
-          |> make_refute_graph bot
-          |> fold (Atom_Graph.default_node o rpair ()) conjs
-
-        val axioms = axioms_of_refute_graph refute_graph conjs
-
-        val tainted = tainted_atoms_of_refute_graph refute_graph conjs
-        val is_clause_tainted = exists (member (op =) tainted)
-        val steps =
-          Symtab.empty
-          |> fold (fn (name as (s, _), role, t, rule, _) =>
-              Symtab.update_new (s, (rule, t
-                |> (if is_clause_tainted [name] then
-                      HOLogic.dest_Trueprop
-                      #> role <> Conjecture ? s_not
-                      #> fold exists_of (map Var (Term.add_vars t []))
-                      #> HOLogic.mk_Trueprop
-                    else
-                      I))))
-            atp_proof
-
-        val rule_of_clause_id = fst o the o Symtab.lookup steps o fst
-
-        fun prop_of_clause [(num, _)] = Symtab.lookup steps num |> the |> snd |> close_form
-          | prop_of_clause names =
-            let
-              val lits = map (HOLogic.dest_Trueprop o snd)
-                (map_filter (Symtab.lookup steps o fst) names)
-            in
-              (case List.partition (can HOLogic.dest_not) lits of
-                (negs as _ :: _, pos as _ :: _) =>
-                s_imp (Library.foldr1 s_conj (map HOLogic.dest_not negs), Library.foldr1 s_disj pos)
-              | _ => fold (curry s_disj) lits @{term False})
-            end
-            |> HOLogic.mk_Trueprop |> close_form
-
-        fun maybe_show outer c = (outer andalso eq_set (op =) (c, conjs)) ? cons Show
-
-        fun isar_steps outer predecessor accum [] =
-            accum
-            |> (if tainted = [] then
-                  cons (Prove (if outer then [Show] else [], [], no_label, concl_t, [],
-                               ((the_list predecessor, []), metislike_methodss)))
-                else
-                  I)
-            |> rev
-          | isar_steps outer _ accum (Have (id, (gamma, c)) :: infs) =
-            let
-              val l = label_of_clause c
-              val t = prop_of_clause c
-              val rule = rule_of_clause_id id
-              val skolem = is_skolemize_rule rule
-
-              fun prove sub by = Prove (maybe_show outer c [], [], l, t, sub, by)
-              fun do_rest l step = isar_steps outer (SOME l) (step :: accum) infs
-
-              val deps = fold add_fact_of_dependencies gamma no_facts
-              val methss =
-                if is_arith_rule rule then arith_methodss
-                else if is_datatype_rule rule then datatype_methodss
-                else metislike_methodss
-              val by = (deps, methss)
-            in
-              if is_clause_tainted c then
-                (case gamma of
-                  [g] =>
-                  if skolem andalso is_clause_tainted g then
-                    let val subproof = Proof (skolems_of (prop_of_clause g), [], rev accum) in
-                      isar_steps outer (SOME l) [prove [subproof] (no_facts, skolem_methodss)] infs
-                    end
-                  else
-                    do_rest l (prove [] by)
-                | _ => do_rest l (prove [] by))
-              else
-                do_rest l (if skolem then Prove ([], skolems_of t, l, t, [], by) else prove [] by)
-            end
-          | isar_steps outer predecessor accum (Cases cases :: infs) =
-            let
-              fun isar_case (c, subinfs) =
-                isar_proof false [] [(label_of_clause c, prop_of_clause c)] [] subinfs
-              val c = succedent_of_cases cases
-              val l = label_of_clause c
-              val t = prop_of_clause c
-              val step =
-                Prove (maybe_show outer c [], [], l, t,
-                  map isar_case (filter_out (null o snd) cases),
-                  ((the_list predecessor, []), metislike_methodss))
-            in
-              isar_steps outer (SOME l) (step :: accum) infs
-            end
-        and isar_proof outer fix assms lems infs =
-          Proof (fix, assms, lems @ isar_steps outer NONE [] infs)
-
-        val (preplay_interface as {overall_preplay_outcome, ...}, isar_proof) =
-          refute_graph
-(*
-          |> tap (tracing o prefix "Refute graph: " o string_of_refute_graph)
-*)
-          |> redirect_graph axioms tainted bot
-(*
-          |> tap (tracing o prefix "Direct proof: " o string_of_direct_proof)
-*)
-          |> isar_proof true params assms lems
-          |> postprocess_remove_unreferenced_steps I
-          |> relabel_proof_canonically
-          |> `(proof_preplay_interface debug ctxt metis_type_enc metis_lam_trans do_preplay
-               preplay_timeout)
-
-        val (play_outcome, isar_proof) =
-          isar_proof
-          |> compress_proof (if isar_proofs = SOME true then compress_isar else 1000.0)
-               preplay_interface
-          |> try0_isar ? try0 preplay_timeout preplay_interface
-          |> postprocess_remove_unreferenced_steps (try0_isar ? min_deps_of_step preplay_interface)
-          |> `overall_preplay_outcome
-          ||> (chain_direct_proof #> kill_useless_labels_in_proof #> relabel_proof)
-
-        val isar_text =
-          string_of_proof ctxt metis_type_enc metis_lam_trans subgoal subgoal_count isar_proof
-      in
-        (case isar_text of
-          "" =>
-          if isar_proofs = SOME true then
-            "\nNo structured proof available (proof too simple)."
-          else
-            ""
-        | _ =>
-          let
-            val msg =
-              (if verbose then
-                let val num_steps = add_proof_steps (steps_of_proof isar_proof) 0 in
-                  [string_of_int num_steps ^ " step" ^ plural_s num_steps]
-                end
-               else
-                 []) @
-              (if do_preplay then [string_of_play_outcome play_outcome] else [])
-          in
-            "\n\nStructured proof" ^ (commas msg |> not (null msg) ? enclose " (" ")") ^ ":\n" ^
-            Active.sendback_markup [Markup.padding_command] isar_text
-          end)
-      end
-
-    val one_line_proof = one_line_proof_text 0 one_line_params
-    val isar_proof =
-      if debug then
-        isar_proof_of ()
-      else
-        (case try isar_proof_of () of
-          SOME s => s
-        | NONE =>
-          if isar_proofs = SOME true then "\nWarning: The Isar proof construction failed." else "")
-  in one_line_proof ^ isar_proof end
-
-fun isar_proof_would_be_a_good_idea (reconstr, play) =
-  (case play of
-    Played _ => reconstr = SMT
-  | Play_Timed_Out _ => true
-  | Play_Failed => true
-  | Not_Played => false)
-
-fun proof_text ctxt debug isar_proofs isar_params num_chained
-               (one_line_params as (preplay, _, _, _, _, _)) =
-  (if isar_proofs = SOME true orelse
-      (isar_proofs = NONE andalso isar_proof_would_be_a_good_idea preplay) then
-     isar_proof_text ctxt debug isar_proofs isar_params
-   else
-     one_line_proof_text num_chained) one_line_params
-
-end;