src/HOL/Code_Eval.thy
changeset 32658 82956a3f0e0b
parent 32656 3bd9296b16ac
parent 32657 5f13912245ff
child 32674 b629fbcc5313
child 32753 5fae12e4679c
--- a/src/HOL/Code_Eval.thy	Wed Sep 23 13:48:16 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,271 +0,0 @@
-(*  Title:      HOL/Code_Eval.thy
-    Author:     Florian Haftmann, TU Muenchen
-*)
-
-header {* Term evaluation using the generic code generator *}
-
-theory Code_Eval
-imports Plain Typerep Code_Numeral
-begin
-
-subsection {* Term representation *}
-
-subsubsection {* Terms and class @{text term_of} *}
-
-datatype "term" = dummy_term
-
-definition Const :: "String.literal \<Rightarrow> typerep \<Rightarrow> term" where
-  "Const _ _ = dummy_term"
-
-definition App :: "term \<Rightarrow> term \<Rightarrow> term" where
-  "App _ _ = dummy_term"
-
-code_datatype Const App
-
-class term_of = typerep +
-  fixes term_of :: "'a \<Rightarrow> term"
-
-lemma term_of_anything: "term_of x \<equiv> t"
-  by (rule eq_reflection) (cases "term_of x", cases t, simp)
-
-definition valapp :: "('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term)
-  \<Rightarrow> 'a \<times> (unit \<Rightarrow> term) \<Rightarrow> 'b \<times> (unit \<Rightarrow> term)" where
-  "valapp f x = (fst f (fst x), \<lambda>u. App (snd f ()) (snd x ()))"
-
-lemma valapp_code [code, code_unfold]:
-  "valapp (f, tf) (x, tx) = (f x, \<lambda>u. App (tf ()) (tx ()))"
-  by (simp only: valapp_def fst_conv snd_conv)
-
-
-subsubsection {* @{text term_of} instances *}
-
-instantiation "fun" :: (typerep, typerep) term_of
-begin
-
-definition
-  "term_of (f \<Colon> 'a \<Rightarrow> 'b) = Const (STR ''dummy_pattern'') (Typerep.Typerep (STR ''fun'')
-     [Typerep.typerep TYPE('a), Typerep.typerep TYPE('b)])"
-
-instance ..
-
-end
-
-setup {*
-let
-  fun add_term_of tyco raw_vs thy =
-    let
-      val vs = map (fn (v, _) => (v, @{sort typerep})) raw_vs;
-      val ty = Type (tyco, map TFree vs);
-      val lhs = Const (@{const_name term_of}, ty --> @{typ term})
-        $ Free ("x", ty);
-      val rhs = @{term "undefined \<Colon> term"};
-      val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
-      fun triv_name_of t = (fst o dest_Free o fst o strip_comb o fst
-        o HOLogic.dest_eq o HOLogic.dest_Trueprop) t ^ "_triv";
-    in
-      thy
-      |> TheoryTarget.instantiation ([tyco], vs, @{sort term_of})
-      |> `(fn lthy => Syntax.check_term lthy eq)
-      |-> (fn eq => Specification.definition (NONE, ((Binding.name (triv_name_of eq), []), eq)))
-      |> snd
-      |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
-    end;
-  fun ensure_term_of (tyco, (raw_vs, _)) thy =
-    let
-      val need_inst = not (can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort term_of})
-        andalso can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort typerep};
-    in if need_inst then add_term_of tyco raw_vs thy else thy end;
-in
-  Code.type_interpretation ensure_term_of
-end
-*}
-
-setup {*
-let
-  fun mk_term_of_eq thy ty vs tyco (c, tys) =
-    let
-      val t = list_comb (Const (c, tys ---> ty),
-        map Free (Name.names Name.context "a" tys));
-      val (arg, rhs) = pairself (Thm.cterm_of thy o map_types Logic.unvarifyT o Logic.varify)
-        (t, (map_aterms (fn t as Free (v, ty) => HOLogic.mk_term_of ty t | t => t) o HOLogic.reflect_term) t)
-      val cty = Thm.ctyp_of thy ty;
-    in
-      @{thm term_of_anything}
-      |> Drule.instantiate' [SOME cty] [SOME arg, SOME rhs]
-      |> Thm.varifyT
-    end;
-  fun add_term_of_code tyco raw_vs raw_cs thy =
-    let
-      val algebra = Sign.classes_of thy;
-      val vs = map (fn (v, sort) =>
-        (v, curry (Sorts.inter_sort algebra) @{sort typerep} sort)) raw_vs;
-      val ty = Type (tyco, map TFree vs);
-      val cs = (map o apsnd o map o map_atyps)
-        (fn TFree (v, _) => TFree (v, (the o AList.lookup (op =) vs) v)) raw_cs;
-      val const = AxClass.param_of_inst thy (@{const_name term_of}, tyco);
-      val eqs = map (mk_term_of_eq thy ty vs tyco) cs;
-   in
-      thy
-      |> Code.del_eqns const
-      |> fold Code.add_eqn eqs
-    end;
-  fun ensure_term_of_code (tyco, (raw_vs, cs)) thy =
-    let
-      val has_inst = can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort term_of};
-    in if has_inst then add_term_of_code tyco raw_vs cs thy else thy end;
-in
-  Code.type_interpretation ensure_term_of_code
-end
-*}
-
-
-subsubsection {* Code generator setup *}
-
-lemmas [code del] = term.recs term.cases term.size
-lemma [code, code del]: "eq_class.eq (t1\<Colon>term) t2 \<longleftrightarrow> eq_class.eq t1 t2" ..
-
-lemma [code, code del]: "(term_of \<Colon> typerep \<Rightarrow> term) = term_of" ..
-lemma [code, code del]: "(term_of \<Colon> term \<Rightarrow> term) = term_of" ..
-lemma [code, code del]: "(term_of \<Colon> String.literal \<Rightarrow> term) = term_of" ..
-lemma [code, code del]:
-  "(Code_Eval.term_of \<Colon> 'a::{type, term_of} Predicate.pred \<Rightarrow> Code_Eval.term) = Code_Eval.term_of" ..
-lemma [code, code del]:
-  "(Code_Eval.term_of \<Colon> 'a::{type, term_of} Predicate.seq \<Rightarrow> Code_Eval.term) = Code_Eval.term_of" ..
-
-lemma term_of_char [unfolded typerep_fun_def typerep_char_def typerep_nibble_def, code]: "Code_Eval.term_of c =
-    (let (n, m) = nibble_pair_of_char c
-  in Code_Eval.App (Code_Eval.App (Code_Eval.Const (STR ''String.char.Char'') (TYPEREP(nibble \<Rightarrow> nibble \<Rightarrow> char)))
-    (Code_Eval.term_of n)) (Code_Eval.term_of m))"
-  by (subst term_of_anything) rule 
-
-code_type "term"
-  (Eval "Term.term")
-
-code_const Const and App
-  (Eval "Term.Const/ ((_), (_))" and "Term.$/ ((_), (_))")
-
-code_const "term_of \<Colon> String.literal \<Rightarrow> term"
-  (Eval "HOLogic.mk'_message'_string")
-
-code_reserved Eval HOLogic
-
-
-subsubsection {* Syntax *}
-
-definition termify :: "'a \<Rightarrow> term" where
-  [code del]: "termify x = dummy_term"
-
-abbreviation valtermify :: "'a \<Rightarrow> 'a \<times> (unit \<Rightarrow> term)" where
-  "valtermify x \<equiv> (x, \<lambda>u. termify x)"
-
-setup {*
-let
-  fun map_default f xs =
-    let val ys = map f xs
-    in if exists is_some ys
-      then SOME (map2 the_default xs ys)
-      else NONE
-    end;
-  fun subst_termify_app (Const (@{const_name termify}, T), [t]) =
-        if not (Term.has_abs t)
-        then if fold_aterms (fn Const _ => I | _ => K false) t true
-          then SOME (HOLogic.reflect_term t)
-          else error "Cannot termify expression containing variables"
-        else error "Cannot termify expression containing abstraction"
-    | subst_termify_app (t, ts) = case map_default subst_termify ts
-       of SOME ts' => SOME (list_comb (t, ts'))
-        | NONE => NONE
-  and subst_termify (Abs (v, T, t)) = (case subst_termify t
-       of SOME t' => SOME (Abs (v, T, t'))
-        | NONE => NONE)
-    | subst_termify t = subst_termify_app (strip_comb t) 
-  fun check_termify ts ctxt = map_default subst_termify ts
-    |> Option.map (rpair ctxt)
-in
-  Context.theory_map (Syntax.add_term_check 0 "termify" check_termify)
-end;
-*}
-
-locale term_syntax
-begin
-
-notation App (infixl "<\<cdot>>" 70)
-  and valapp (infixl "{\<cdot>}" 70)
-
-end
-
-interpretation term_syntax .
-
-no_notation App (infixl "<\<cdot>>" 70)
-  and valapp (infixl "{\<cdot>}" 70)
-
-
-subsection {* Numeric types *}
-
-definition term_of_num :: "'a\<Colon>{semiring_div} \<Rightarrow> 'a\<Colon>{semiring_div} \<Rightarrow> term" where
-  "term_of_num two = (\<lambda>_. dummy_term)"
-
-lemma (in term_syntax) term_of_num_code [code]:
-  "term_of_num two k = (if k = 0 then termify Int.Pls
-    else (if k mod two = 0
-      then termify Int.Bit0 <\<cdot>> term_of_num two (k div two)
-      else termify Int.Bit1 <\<cdot>> term_of_num two (k div two)))"
-  by (auto simp add: term_of_anything Const_def App_def term_of_num_def Let_def)
-
-lemma (in term_syntax) term_of_nat_code [code]:
-  "term_of (n::nat) = termify (number_of :: int \<Rightarrow> nat) <\<cdot>> term_of_num (2::nat) n"
-  by (simp only: term_of_anything)
-
-lemma (in term_syntax) term_of_int_code [code]:
-  "term_of (k::int) = (if k = 0 then termify (0 :: int)
-    else if k > 0 then termify (number_of :: int \<Rightarrow> int) <\<cdot>> term_of_num (2::int) k
-      else termify (uminus :: int \<Rightarrow> int) <\<cdot>> (termify (number_of :: int \<Rightarrow> int) <\<cdot>> term_of_num (2::int) (- k)))"
-  by (simp only: term_of_anything)
-
-lemma (in term_syntax) term_of_code_numeral_code [code]:
-  "term_of (k::code_numeral) = termify (number_of :: int \<Rightarrow> code_numeral) <\<cdot>> term_of_num (2::code_numeral) k"
-  by (simp only: term_of_anything)
-
-subsection {* Obfuscate *}
-
-print_translation {*
-let
-  val term = Const ("<TERM>", dummyT);
-  fun tr1' [_, _] = term;
-  fun tr2' [] = term;
-in
-  [(@{const_syntax Const}, tr1'),
-    (@{const_syntax App}, tr1'),
-    (@{const_syntax dummy_term}, tr2')]
-end
-*}
-
-hide const dummy_term App valapp
-hide (open) const Const termify valtermify term_of term_of_num
-
-
-subsection {* Evaluation setup *}
-
-ML {*
-signature EVAL =
-sig
-  val eval_ref: (unit -> term) option ref
-  val eval_term: theory -> term -> term
-end;
-
-structure Eval : EVAL =
-struct
-
-val eval_ref = ref (NONE : (unit -> term) option);
-
-fun eval_term thy t =
-  Code_ML.eval NONE ("Eval.eval_ref", eval_ref) I thy (HOLogic.mk_term_of (fastype_of t) t) [];
-
-end;
-*}
-
-setup {*
-  Value.add_evaluator ("code", Eval.eval_term o ProofContext.theory_of)
-*}
-
-end