src/HOL/Library/NthRoot_Limits.thy
changeset 60141 833adf7db7d8
parent 60140 a948ee5fb5f4
child 60142 3275dddf356f
child 60144 50eb4fdd5860
--- a/src/HOL/Library/NthRoot_Limits.thy	Mon Apr 20 13:46:36 2015 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,88 +0,0 @@
-theory NthRoot_Limits
-  imports Complex_Main
-begin
-
-lemma LIMSEQ_root: "(\<lambda>n. root n n) ----> 1"
-proof -
-  def x \<equiv> "\<lambda>n. root n n - 1"
-  have "x ----> sqrt 0"
-  proof (rule tendsto_sandwich[OF _ _ tendsto_const])
-    show "(\<lambda>x. sqrt (2 / x)) ----> sqrt 0"
-      by (intro tendsto_intros tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially])
-         (simp_all add: at_infinity_eq_at_top_bot)
-    { fix n :: nat assume "2 < n"
-      have "1 + (real (n - 1) * n) / 2 * x n^2 = 1 + of_nat (n choose 2) * x n^2"
-        using `2 < n` unfolding gbinomial_def binomial_gbinomial
-        by (simp add: atLeast0AtMost atMost_Suc field_simps real_of_nat_diff numeral_2_eq_2 real_eq_of_nat[symmetric])
-      also have "\<dots> \<le> (\<Sum>k\<in>{0, 2}. of_nat (n choose k) * x n^k)"
-        by (simp add: x_def)
-      also have "\<dots> \<le> (\<Sum>k=0..n. of_nat (n choose k) * x n^k)"
-        using `2 < n` by (intro setsum_mono2) (auto intro!: mult_nonneg_nonneg zero_le_power simp: x_def le_diff_eq)
-      also have "\<dots> = (x n + 1) ^ n"
-        by (simp add: binomial_ring)
-      also have "\<dots> = n"
-        using `2 < n` by (simp add: x_def)
-      finally have "real (n - 1) * (real n / 2 * (x n)\<^sup>2) \<le> real (n - 1) * 1"
-        by simp
-      then have "(x n)\<^sup>2 \<le> 2 / real n"
-        using `2 < n` unfolding mult_le_cancel_left by (simp add: field_simps)
-      from real_sqrt_le_mono[OF this] have "x n \<le> sqrt (2 / real n)"
-        by simp }
-    then show "eventually (\<lambda>n. x n \<le> sqrt (2 / real n)) sequentially"
-      by (auto intro!: exI[of _ 3] simp: eventually_sequentially)
-    show "eventually (\<lambda>n. sqrt 0 \<le> x n) sequentially"
-      by (auto intro!: exI[of _ 1] simp: eventually_sequentially le_diff_eq x_def)
-  qed
-  from tendsto_add[OF this tendsto_const[of 1]] show ?thesis
-    by (simp add: x_def)
-qed
-
-lemma LIMSEQ_root_const:
-  assumes "0 < c"
-  shows "(\<lambda>n. root n c) ----> 1"
-proof -
-  { fix c :: real assume "1 \<le> c"
-    def x \<equiv> "\<lambda>n. root n c - 1"
-    have "x ----> 0"
-    proof (rule tendsto_sandwich[OF _ _ tendsto_const])
-      show "(\<lambda>n. c / n) ----> 0"
-        by (intro tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially])
-           (simp_all add: at_infinity_eq_at_top_bot)
-      { fix n :: nat assume "1 < n"
-        have "1 + x n * n = 1 + of_nat (n choose 1) * x n^1"
-          using `1 < n` unfolding gbinomial_def binomial_gbinomial by (simp add: real_eq_of_nat[symmetric])
-        also have "\<dots> \<le> (\<Sum>k\<in>{0, 1}. of_nat (n choose k) * x n^k)"
-          by (simp add: x_def)
-        also have "\<dots> \<le> (\<Sum>k=0..n. of_nat (n choose k) * x n^k)"
-          using `1 < n` `1 \<le> c` by (intro setsum_mono2) (auto intro!: mult_nonneg_nonneg zero_le_power simp: x_def le_diff_eq)
-        also have "\<dots> = (x n + 1) ^ n"
-          by (simp add: binomial_ring)
-        also have "\<dots> = c"
-          using `1 < n` `1 \<le> c` by (simp add: x_def)
-        finally have "x n \<le> c / n"
-          using `1 \<le> c` `1 < n` by (simp add: field_simps) }
-      then show "eventually (\<lambda>n. x n \<le> c / n) sequentially"
-        by (auto intro!: exI[of _ 3] simp: eventually_sequentially)
-      show "eventually (\<lambda>n. 0 \<le> x n) sequentially"
-        using `1 \<le> c` by (auto intro!: exI[of _ 1] simp: eventually_sequentially le_diff_eq x_def)
-    qed
-    from tendsto_add[OF this tendsto_const[of 1]] have "(\<lambda>n. root n c) ----> 1"
-      by (simp add: x_def) }
-  note ge_1 = this
-
-  show ?thesis
-  proof cases
-    assume "1 \<le> c" with ge_1 show ?thesis by blast
-  next
-    assume "\<not> 1 \<le> c"
-    with `0 < c` have "1 \<le> 1 / c"
-      by simp
-    then have "(\<lambda>n. 1 / root n (1 / c)) ----> 1 / 1"
-      by (intro tendsto_divide tendsto_const ge_1 `1 \<le> 1 / c` one_neq_zero)
-    then show ?thesis
-      by (rule filterlim_cong[THEN iffD1, rotated 3])
-         (auto intro!: exI[of _ 1] simp: eventually_sequentially real_root_divide)
-  qed
-qed
-
-end