src/HOL/Nominal/Examples/Lambda_mu.thy
changeset 18106 836135c8acb2
child 18269 3f36e2165e51
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Examples/Lambda_mu.thy	Mon Nov 07 15:19:03 2005 +0100
@@ -0,0 +1,122 @@
+
+theory lambda_mu 
+imports "../nominal" 
+begin
+
+section {* Mu-Calculus from Gavin's cilmu-Paper*}
+
+atom_decl var mvar
+
+nominal_datatype trm = Var   "var" 
+                     | Lam  "\<guillemotleft>var\<guillemotright>trm"   ("Lam [_]._" [100,100] 100)
+                     | App  "trm" "trm" 
+                     | Pss  "mvar" "trm"
+                     | Act  "\<guillemotleft>mvar\<guillemotright>trm"  ("Act [_]._" [100,100] 100)
+
+section {* strong induction principle *}
+
+lemma trm_induct_aux:
+  fixes P :: "trm \<Rightarrow> 'a \<Rightarrow> bool"
+  and   f1 :: "'a \<Rightarrow> var set"
+  and   f2 :: "'a \<Rightarrow> mvar set"
+  assumes fs1: "\<And>x. finite (f1 x)"
+      and fs2: "\<And>x. finite (f2 x)"
+      and h1: "\<And>k x. P (Var x) k"  
+      and h2: "\<And>k x t. x\<notin>f1 k \<Longrightarrow> (\<forall>l. P t l) \<Longrightarrow> P (Lam [x].t) k" 
+      and h3: "\<And>k t1 t2. (\<forall>l. P t1 l) \<Longrightarrow> (\<forall>l. P t2 l) \<Longrightarrow> P (App t1 t2) k" 
+      and h4: "\<And>k a t1. (\<forall>l. P t1 l) \<Longrightarrow> P (Pss a t1) k" 
+      and h5: "\<And>k a t1. a\<notin>f2 k \<Longrightarrow> (\<forall>l. P t1 l) \<Longrightarrow> P (Act [a].t1) k"
+  shows "\<forall>(pi1::var prm) (pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t)) k"
+proof (induct rule: trm.induct_weak)
+  case (goal1 a)
+  show ?case using h1 by simp
+next
+  case (goal2 x t)
+  assume i1: "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t)) k" 
+  show ?case
+  proof (intro strip, simp add: abs_perm)
+    fix pi1::"var prm" and pi2::"mvar prm" and k::"'a"
+    have f: "\<exists>c::var. c\<sharp>(f1 k,pi1\<bullet>(pi2\<bullet>x),pi1\<bullet>(pi2\<bullet>t))"
+      by (rule at_exists_fresh[OF at_var_inst], simp add: supp_prod fs_var1 
+          at_fin_set_supp[OF at_var_inst, OF fs1] fs1)
+    then obtain c::"var" 
+      where f1: "c\<noteq>(pi1\<bullet>(pi2\<bullet>x))" and f2: "c\<sharp>(f1 k)" and f3: "c\<sharp>(pi1\<bullet>(pi2\<bullet>t))" 
+      by (force simp add: fresh_prod at_fresh[OF at_var_inst])
+    have g: "Lam [c].([(c,pi1\<bullet>(pi2\<bullet>x))]\<bullet>(pi1\<bullet>(pi2\<bullet>t))) = Lam [(pi1\<bullet>(pi2\<bullet>x))].(pi1\<bullet>(pi2\<bullet>t))" using f1 f3
+      by (simp add: trm.inject alpha)
+    from i1 have "\<forall>k. P (([(c,pi1\<bullet>(pi2\<bullet>x))]@pi1)\<bullet>(pi2\<bullet>t)) k" by force
+    hence i1b: "\<forall>k. P ([(c,pi1\<bullet>(pi2\<bullet>x))]\<bullet>(pi1\<bullet>(pi2\<bullet>t))) k" by (simp add: pt_var2[symmetric])
+    with h3 f2 have "P (Lam [c].([(c,pi1\<bullet>(pi2\<bullet>x))]\<bullet>(pi1\<bullet>(pi2\<bullet>t)))) k" 
+      by (auto simp add: fresh_def at_fin_set_supp[OF at_var_inst, OF fs1])
+    with g show "P (Lam [(pi1\<bullet>(pi2\<bullet>x))].(pi1\<bullet>(pi2\<bullet>t))) k" by simp 
+  qed
+next 
+  case (goal3 t1 t2)
+  assume i1: "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t1)) k" 
+  assume i2: "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t2)) k"
+  show ?case 
+  proof (intro strip)
+    fix pi1::"var prm" and pi2::"mvar prm" and k::"'a"
+    from h3 i1 i2 have "P (App (pi1\<bullet>(pi2\<bullet>t1)) (pi1\<bullet>(pi2\<bullet>t2))) k" by force
+    thus "P (pi1\<bullet>(pi2\<bullet>(App t1 t2))) k" by simp
+  qed
+next
+  case (goal4 b t)
+  assume i1: "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t)) k" 
+  show ?case 
+  proof (intro strip)
+    fix pi1::"var prm" and pi2::"mvar prm" and k::"'a"
+    from h4 i1 have "P (Pss (pi1\<bullet>(pi2\<bullet>b)) (pi1\<bullet>(pi2\<bullet>t))) k" by force
+    thus "P (pi1\<bullet>(pi2\<bullet>(Pss b t))) k" by simp
+  qed
+next
+  case (goal5 b t)
+  assume i1: "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t)) k" 
+  show ?case
+  proof (intro strip, simp add: abs_perm)
+    fix pi1::"var prm" and pi2::"mvar prm" and k::"'a"
+    have f: "\<exists>c::mvar. c\<sharp>(f2 k,pi1\<bullet>(pi2\<bullet>b),pi1\<bullet>(pi2\<bullet>t))"
+      by (rule at_exists_fresh[OF at_mvar_inst], simp add: supp_prod fs_mvar1 
+          at_fin_set_supp[OF at_mvar_inst, OF fs2] fs2)
+    then obtain c::"mvar" 
+      where f1: "c\<noteq>(pi1\<bullet>(pi2\<bullet>b))" and f2: "c\<sharp>(f2 k)" and f3: "c\<sharp>(pi1\<bullet>(pi2\<bullet>t))" 
+      by (force simp add: fresh_prod at_fresh[OF at_mvar_inst])
+    have g: "Act [c].(pi1\<bullet>([(c,pi1\<bullet>(pi2\<bullet>b))]\<bullet>(pi2\<bullet>t))) = Act [(pi1\<bullet>(pi2\<bullet>b))].(pi1\<bullet>(pi2\<bullet>t))" using f1 f3
+      by (simp add: trm.inject alpha, simp add: dj_cp[OF cp_mvar_var_inst, OF dj_var_mvar])
+    from i1 have "\<forall>k. P (pi1\<bullet>(([(c,pi1\<bullet>(pi2\<bullet>b))]@pi2)\<bullet>t)) k" by force
+    hence i1b: "\<forall>k. P (pi1\<bullet>([(c,pi1\<bullet>(pi2\<bullet>b))]\<bullet>(pi2\<bullet>t))) k" by (simp add: pt_mvar2[symmetric])
+    with h5 f2 have "P (Act [c].(pi1\<bullet>([(c,pi1\<bullet>(pi2\<bullet>b))]\<bullet>(pi2\<bullet>t)))) k" 
+      by (auto simp add: fresh_def at_fin_set_supp[OF at_mvar_inst, OF fs2])
+    with g show "P (Act [(pi1\<bullet>(pi2\<bullet>b))].(pi1\<bullet>(pi2\<bullet>t))) k" by simp 
+  qed
+qed
+
+lemma trm_induct'[case_names Var Lam App Pss Act]:
+  fixes P :: "trm \<Rightarrow> 'a \<Rightarrow> bool"
+  and   f1 :: "'a \<Rightarrow> var set"
+  and   f2 :: "'a \<Rightarrow> mvar set"
+  assumes fs1: "\<And>x. finite (f1 x)"
+      and fs2: "\<And>x. finite (f2 x)"
+      and h1: "\<And>k x. P (Var x) k"  
+      and h2: "\<And>k x t. x\<notin>f1 k \<Longrightarrow> (\<forall>l. P t l) \<Longrightarrow> P (Lam [x].t) k" 
+      and h3: "\<And>k t1 t2. (\<forall>l. P t1 l) \<Longrightarrow> (\<forall>l. P t2 l) \<Longrightarrow> P (App t1 t2) k" 
+      and h4: "\<And>k a t1. (\<forall>l. P t1 l) \<Longrightarrow> P (Pss a t1) k" 
+      and h5: "\<And>k a t1. a\<notin>f2 k \<Longrightarrow> (\<forall>l. P t1 l) \<Longrightarrow> P (Act [a].t1) k"
+  shows "P t k"
+proof -
+  have "\<forall>(pi1::var prm)(pi2::mvar prm) k. P (pi1\<bullet>(pi2\<bullet>t)) k"
+  using fs1 fs2 h1 h2 h3 h4 h5 by (rule trm_induct_aux, auto)
+  hence "P (([]::var prm)\<bullet>(([]::mvar prm)\<bullet>t)) k" by blast
+  thus "P t k" by simp
+qed
+
+lemma trm_induct[case_names Var Lam App Pss Act]: 
+  fixes P :: "trm \<Rightarrow> ('a::{fs_var,fs_mvar}) \<Rightarrow> bool"
+  assumes h1: "\<And>k x. P (Var x) k"  
+      and h2: "\<And>k x t. x\<sharp>k \<Longrightarrow> (\<forall>l. P t l) \<Longrightarrow> P (Lam [x].t) k" 
+      and h3: "\<And>k t1 t2. (\<forall>l. P t1 l) \<Longrightarrow> (\<forall>l. P t2 l) \<Longrightarrow> P (App t1 t2) k" 
+      and h4: "\<And>k a t1. (\<forall>l. P t1 l) \<Longrightarrow> P (Pss a t1) k" 
+      and h5: "\<And>k a t1. a\<sharp>k \<Longrightarrow> (\<forall>l. P t1 l) \<Longrightarrow> P (Act [a].t1) k"
+  shows  "P t k"
+by (rule trm_induct'[of "\<lambda>x. ((supp x)::var set)" "\<lambda>x. ((supp x)::mvar set)" "P"], 
+    simp_all add: fs_var1 fs_mvar1 fresh_def[symmetric], auto intro: h1 h2 h3 h4 h5)