src/HOL/Subst/Unify.ML
changeset 15635 8408a06590a6
parent 15634 bca33c49b083
child 15636 57c437b70521
--- a/src/HOL/Subst/Unify.ML	Mon Mar 28 16:19:56 2005 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,251 +0,0 @@
-(*  Title:      Subst/Unify
-    ID:         $Id$
-    Author:     Konrad Slind, Cambridge University Computer Laboratory
-    Copyright   1997  University of Cambridge
-
-Unification algorithm
-*)
-
-(*---------------------------------------------------------------------------
- * This file defines a nested unification algorithm, then proves that it 
- * terminates, then proves 2 correctness theorems: that when the algorithm
- * succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
- * Although the proofs may seem long, they are actually quite direct, in that
- * the correctness and termination properties are not mingled as much as in 
- * previous proofs of this algorithm. 
- *
- * Our approach for nested recursive functions is as follows: 
- *
- *    0. Prove the wellfoundedness of the termination relation.
- *    1. Prove the non-nested termination conditions.
- *    2. Eliminate (0) and (1) from the recursion equations and the 
- *       induction theorem.
- *    3. Prove the nested termination conditions by using the induction 
- *       theorem from (2) and by using the recursion equations from (2). 
- *       These are constrained by the nested termination conditions, but 
- *       things work out magically (by wellfoundedness of the termination 
- *       relation).
- *    4. Eliminate the nested TCs from the results of (2).
- *    5. Prove further correctness properties using the results of (4).
- *
- * Deeper nestings require iteration of steps (3) and (4).
- *---------------------------------------------------------------------------*)
-
-(*---------------------------------------------------------------------------
- * The non-nested TC plus the wellfoundedness of unifyRel.
- *---------------------------------------------------------------------------*)
-Tfl.tgoalw Unify.thy [] unify.simps;
-(* Wellfoundedness of unifyRel *)
-by (simp_tac (simpset() addsimps [unifyRel_def,
-				 wf_inv_image, wf_lex_prod, wf_finite_psubset,
-				 wf_measure]) 1);
-(* TC *)
-by Safe_tac;
-by (simp_tac (simpset() addsimps [finite_psubset_def, finite_vars_of,
-				 lex_prod_def, measure_def, inv_image_def]) 1);
-by (rtac (monotone_vars_of RS (subset_iff_psubset_eq RS iffD1) RS disjE) 1);
-by (Blast_tac 1);
-by (asm_simp_tac (simpset() addsimps [less_eq, less_add_Suc1]) 1);
-qed "tc0";
-
-
-(*---------------------------------------------------------------------------
- * Termination proof.
- *---------------------------------------------------------------------------*)
-
-Goalw [unifyRel_def, measure_def] "trans unifyRel";
-by (REPEAT (resolve_tac [trans_inv_image, trans_lex_prod, 
-			 trans_finite_psubset, trans_less_than,
-			 trans_inv_image] 1));
-qed "trans_unifyRel";
-
-
-(*---------------------------------------------------------------------------
- * The following lemma is used in the last step of the termination proof for 
- * the nested call in Unify.  Loosely, it says that unifyRel doesn't care
- * about term structure.
- *---------------------------------------------------------------------------*)
-Goalw [unifyRel_def,lex_prod_def, inv_image_def]
-  "((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : unifyRel  ==> \
-\  ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : unifyRel";
-by (asm_full_simp_tac (simpset() addsimps [measure_def, 
-                          less_eq, inv_image_def,add_assoc]) 1);
-by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
-                \  (vars_of D Un vars_of E Un vars_of F)) = \
-                \ (vars_of A Un (vars_of B Un vars_of C) Un \
-                \  (vars_of D Un (vars_of E Un vars_of F)))" 1);
-by (Blast_tac 2);
-by (Asm_simp_tac 1);
-qed "Rassoc";
-
-
-(*---------------------------------------------------------------------------
- * This lemma proves the nested termination condition for the base cases 
- * 3, 4, and 6. 
- *---------------------------------------------------------------------------*)
-Goal "~(Var x <: M) ==> \
-\   ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb M N1, Comb(Var x) N2)) : unifyRel \
-\ & ((N1 <| [(x,M)], N2 <| [(x,M)]), (Comb(Var x) N1, Comb M N2)) : unifyRel";
-by (case_tac "Var x = M" 1);
-by (hyp_subst_tac 1);
-by (Simp_tac 1);
-by (case_tac "x: (vars_of N1 Un vars_of N2)" 1);
-(*uterm_less case*)
-by (asm_simp_tac
-    (simpset() addsimps [less_eq, unifyRel_def, lex_prod_def,
-			measure_def, inv_image_def]) 1);
-by (Blast_tac 1);
-(*finite_psubset case*)
-by (simp_tac
-    (simpset() addsimps [unifyRel_def, lex_prod_def,
-			measure_def, inv_image_def]) 1);
-by (simp_tac (simpset() addsimps [finite_psubset_def, finite_vars_of,
-				 psubset_def]) 1);
-by (Blast_tac 1);
-(** LEVEL 9 **)
-(*Final case, also finite_psubset*)
-by (simp_tac
-    (simpset() addsimps [finite_vars_of, unifyRel_def, finite_psubset_def,
-			lex_prod_def, measure_def, inv_image_def]) 1);
-by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N2")] Var_elim 1);
-by (cut_inst_tac [("s","[(x,M)]"), ("v", "x"), ("t","N1")] Var_elim 3);
-by (ALLGOALS (asm_simp_tac(simpset() addsimps [srange_iff, vars_iff_occseq])));
-by (REPEAT_FIRST (resolve_tac [conjI, disjI1, psubsetI]));
-by (ALLGOALS (asm_full_simp_tac 
-	      (simpset() addsimps [srange_iff]))); 
-by (ALLGOALS
-    (fast_tac (claset() addEs [Var_intro RS disjE]
-	               addss (simpset() addsimps [srange_iff]))));
-qed "var_elimR";
-
-
-(*---------------------------------------------------------------------------
- * Eliminate tc0 from the recursion equations and the induction theorem.
- *---------------------------------------------------------------------------*)
-val wfr = tc0 RS conjunct1
-and tc  = tc0 RS conjunct2;
-val unifyRules0 = map (rule_by_tactic (rtac wfr 1 THEN TRY(rtac tc 1)))
-                     unify.simps;
-
-val unifyInduct0 = [wfr,tc] MRS unify.induct;
-
-
-(*---------------------------------------------------------------------------
- * The nested TC. Proved by recursion induction.
- *---------------------------------------------------------------------------*)
-val [_,_,tc3] = unify.tcs;
-goalw_cterm [] (cterm_of (sign_of Unify.thy) (HOLogic.mk_Trueprop tc3));
-(*---------------------------------------------------------------------------
- * The extracted TC needs the scope of its quantifiers adjusted, so our 
- * first step is to restrict the scopes of N1 and N2.
- *---------------------------------------------------------------------------*)
-by (subgoal_tac "!M1 M2 theta.  \
- \   unify(M1, M2) = Some theta --> \
- \   (!N1 N2. ((N1<|theta, N2<|theta), (Comb M1 N1, Comb M2 N2)) : unifyRel)" 1);
-by (Blast_tac 1);
-by (rtac allI 1); 
-by (rtac allI 1);
-(* Apply induction *)
-by (res_inst_tac [("u","M1"),("v","M2")] unifyInduct0 1);
-by (ALLGOALS 
-    (asm_simp_tac (simpset() addsimps (var_elimR::unifyRules0))));
-(*Const-Const case*)
-by (simp_tac
-    (simpset() addsimps [unifyRel_def, lex_prod_def, measure_def,
-			inv_image_def, less_eq]) 1);
-(** LEVEL 7 **)
-(*Comb-Comb case*)
-by (asm_simp_tac (simpset() addsplits [option.split]) 1);
-by (strip_tac 1);
-by (rtac (trans_unifyRel RS transD) 1);
-by (Blast_tac 1);
-by (simp_tac (HOL_ss addsimps [subst_Comb RS sym]) 1);
-by (rtac Rassoc 1);
-by (Blast_tac 1);
-qed_spec_mp "unify_TC";
-
-
-(*---------------------------------------------------------------------------
- * Now for elimination of nested TC from unify.simps and induction. 
- *---------------------------------------------------------------------------*)
-
-(*Desired rule, copied from the theory file.  Could it be made available?*)
-Goal "unify(Comb M1 N1, Comb M2 N2) =      \
-\      (case unify(M1,M2)               \
-\        of None => None                \
-\         | Some theta => (case unify(N1 <| theta, N2 <| theta)        \
-\                            of None => None    \
-\                             | Some sigma => Some (theta <> sigma)))";
-by (asm_simp_tac (simpset() addsimps (unify_TC::unifyRules0)
-			   addsplits [option.split]) 1);
-qed "unifyCombComb";
-
-
-val unifyRules = rev (unifyCombComb :: tl (rev unifyRules0));
-
-Addsimps unifyRules;
-
-bind_thm ("unifyInduct",
-	  rule_by_tactic
-	     (ALLGOALS (full_simp_tac (simpset() addsimps [unify_TC])))
-	     unifyInduct0);
-
-
-(*---------------------------------------------------------------------------
- * Correctness. Notice that idempotence is not needed to prove that the 
- * algorithm terminates and is not needed to prove the algorithm correct, 
- * if you are only interested in an MGU.  This is in contrast to the
- * approach of M&W, who used idempotence and MGU-ness in the termination proof.
- *---------------------------------------------------------------------------*)
-
-Goal "!theta. unify(M,N) = Some theta --> MGUnifier theta M N";
-by (res_inst_tac [("u","M"),("v","N")] unifyInduct 1);
-by (ALLGOALS Asm_simp_tac);
-(*Const-Const case*)
-by (simp_tac (simpset() addsimps [MGUnifier_def,Unifier_def]) 1);
-(*Const-Var case*)
-by (stac mgu_sym 1);
-by (simp_tac (simpset() addsimps [MGUnifier_Var]) 1);
-(*Var-M case*)
-by (simp_tac (simpset() addsimps [MGUnifier_Var]) 1);
-(*Comb-Var case*)
-by (stac mgu_sym 1);
-by (simp_tac (simpset() addsimps [MGUnifier_Var]) 1);
-(** LEVEL 8 **)
-(*Comb-Comb case*)
-by (asm_simp_tac (simpset() addsplits [option.split]) 1);
-by (strip_tac 1);
-by (asm_full_simp_tac 
-    (simpset() addsimps [MGUnifier_def, Unifier_def, MoreGeneral_def]) 1);
-by (Safe_tac THEN rename_tac "theta sigma gamma" 1);
-by (eres_inst_tac [("x","gamma")] allE 1 THEN mp_tac 1);
-by (etac exE 1 THEN rename_tac "delta" 1);
-by (eres_inst_tac [("x","delta")] allE 1);
-by (subgoal_tac "N1 <| theta <| delta = N2 <| theta <| delta" 1);
-(*Proving the subgoal*)
-by (full_simp_tac (simpset() addsimps [subst_eq_iff]) 2
-    THEN blast_tac (claset() addIs [trans,sym] delrules [impCE]) 2);
-by (blast_tac (claset() addIs [subst_trans, subst_cong, 
-			      comp_assoc RS subst_sym]) 1);
-qed_spec_mp "unify_gives_MGU";
-
-
-(*---------------------------------------------------------------------------
- * Unify returns idempotent substitutions, when it succeeds.
- *---------------------------------------------------------------------------*)
-Goal "!theta. unify(M,N) = Some theta --> Idem theta";
-by (res_inst_tac [("u","M"),("v","N")] unifyInduct 1);
-by (ALLGOALS 
-    (asm_simp_tac 
-       (simpset() addsimps [Var_Idem] addsplits [option.split])));
-(*Comb-Comb case*)
-by Safe_tac;
-by (REPEAT (dtac spec 1 THEN mp_tac 1));
-by (safe_tac (claset() addSDs [rewrite_rule [MGUnifier_def] unify_gives_MGU]));
-by (rtac Idem_comp 1);
-by (atac 1);
-by (atac 1);
-by (best_tac (claset() addss (simpset() addsimps 
-			     [MoreGeneral_def, subst_eq_iff, Idem_def])) 1);
-qed_spec_mp "unify_gives_Idem";
-