src/HOL/Cardinals/Cardinal_Arithmetic.thy
changeset 62390 842917225d56
parent 61943 7fba644ed827
child 63040 eb4ddd18d635
--- a/src/HOL/Cardinals/Cardinal_Arithmetic.thy	Tue Feb 23 15:37:18 2016 +0100
+++ b/src/HOL/Cardinals/Cardinal_Arithmetic.thy	Tue Feb 23 16:25:08 2016 +0100
@@ -226,7 +226,7 @@
   def f \<equiv> "\<lambda>y a. if y = x \<and> a \<in> A then x else undefined"
   have "Func A {x} \<subseteq> f ` {x}" unfolding f_def Func_def by (force simp: fun_eq_iff)
   hence "bij_betw f {x} (Func A {x})" unfolding bij_betw_def inj_on_def f_def Func_def
-    by (auto split: split_if_asm)
+    by (auto split: if_split_asm)
   thus "|{x}| =o |Func A {x}|" using card_of_ordIso by blast
 qed
 
@@ -239,7 +239,7 @@
 proof (rule ordIso_symmetric)
   def f \<equiv> "\<lambda>(x::'a,y) b. if A = {} then undefined else if b then x else y"
   have "Func (UNIV :: bool set) A \<subseteq> f ` (A \<times> A)" unfolding f_def Func_def
-    by (auto simp: image_iff fun_eq_iff split: option.splits split_if_asm) blast
+    by (auto simp: image_iff fun_eq_iff split: option.splits if_split_asm) blast
   hence "bij_betw f (A \<times> A) (Func (UNIV :: bool set) A)"
     unfolding bij_betw_def inj_on_def f_def Func_def by (auto simp: fun_eq_iff)
   thus "|A \<times> A| =o |Func (UNIV :: bool set) A|" using card_of_ordIso by blast