--- a/src/HOL/Multivariate_Analysis/Derivative.thy Tue Feb 23 15:37:18 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy Tue Feb 23 16:25:08 2016 +0100
@@ -903,7 +903,7 @@
unfolding y_def
by (rule cSup_upper) simp
thus False using \<open>d > 0\<close> \<open>y < b\<close>
- by (simp add: d'_def min_def split: split_if_asm)
+ by (simp add: d'_def min_def split: if_split_asm)
qed
} moreover {
assume "a = y"
@@ -2689,7 +2689,7 @@
from fx[OF \<open>x \<in> X\<close> \<open>y \<in> Y\<close>, unfolded has_derivative_within, THEN conjunct2, THEN tendstoD, OF \<open>0 < e\<close>]
have "\<forall>\<^sub>F x' in at x within X. ?le x'"
by eventually_elim
- (auto simp: dist_norm divide_simps blinfun.bilinear_simps field_simps split: split_if_asm)
+ (auto simp: dist_norm divide_simps blinfun.bilinear_simps field_simps split: if_split_asm)
then have "\<forall>\<^sub>F (x', y') in at (x, y) within X \<times> Y. ?le x'"
by (rule eventually_at_Pair_within_TimesI1)
(simp add: blinfun.bilinear_simps)