doc-src/TutorialI/Overview/FP1.thy
changeset 11235 860c65c7388a
child 11236 17403c5a9eb1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Overview/FP1.thy	Fri Mar 30 16:12:57 2001 +0200
@@ -0,0 +1,306 @@
+theory FP1 = Main:
+
+subsection{*More Constructs*}
+
+lemma "if xs = ys
+       then rev xs = rev ys
+       else rev xs \<noteq> rev ys"
+by auto
+
+lemma "case xs of
+         []   \<Rightarrow> tl xs = xs
+       | y#ys \<Rightarrow> tl xs \<noteq> xs"
+apply(case_tac xs)
+by auto
+
+
+subsection{*More Types*}
+
+
+subsubsection{*Natural Numbers*}
+
+consts sum :: "nat \<Rightarrow> nat"
+primrec "sum 0 = 0"
+        "sum (Suc n) = Suc n + sum n"
+
+lemma "sum n + sum n = n*(Suc n)";
+apply(induct_tac n);
+apply(auto);
+done
+
+lemma "\<lbrakk> \<not> m < n; m < n+1 \<rbrakk> \<Longrightarrow> m = n"
+by(auto)
+
+lemma "min i (max j k) = max (min k i) (min i (j::nat))";
+by(arith)
+
+lemma "n*n = n \<Longrightarrow> n=0 \<or> n=1"
+oops
+
+
+subsubsection{*Pairs*}
+
+lemma "fst(x,y) = snd(z,x)"
+by auto
+
+
+
+subsection{*Definitions*}
+
+consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
+
+constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+         "nand x y \<equiv> \<not>(x \<and> y)"
+
+lemma "\<not> xor x x"
+apply(unfold xor_def)
+by auto
+
+
+
+subsection{*Simplification*}
+
+
+subsubsection{*Simplification Rules*}
+
+lemma fst_conv[simp]: "fst(x,y) = x"
+by auto
+
+declare fst_conv[simp]
+declare fst_conv[simp del]
+
+
+subsubsection{*The Simplification Method*}
+
+lemma "x*(y+1) = y*(x+1)"
+apply simp
+oops
+
+
+subsubsection{*Adding and Deleting Simplification Rules*}
+
+lemma "\<forall>x::nat. x*(y+z) = r"
+apply (simp add: add_mult_distrib2)
+oops
+
+lemma "rev(rev(xs @ [])) = xs"
+apply (simp del: rev_rev_ident)
+oops
+
+
+subsubsection{*Assumptions*}
+
+lemma "\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \<rbrakk> \<Longrightarrow> ys = zs";
+apply simp;
+done
+
+lemma "\<forall>x. f x = g (f (g x)) \<Longrightarrow> f [] = f [] @ []";
+apply(simp (no_asm));
+done
+
+
+subsubsection{*Rewriting with Definitions*}
+
+lemma "xor A (\<not>A)";
+apply(simp only:xor_def);
+by simp
+
+
+subsubsection{*Conditional Equations*}
+
+lemma hd_Cons_tl[simp]: "xs \<noteq> []  \<Longrightarrow>  hd xs # tl xs = xs"
+apply(case_tac xs, simp, simp)
+done
+
+lemma "xs \<noteq> [] \<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs"
+by(simp)
+
+
+subsubsection{*Automatic Case Splits*}
+
+lemma "\<forall>xs. if xs = [] then A else B";
+apply simp
+oops
+
+lemma "case xs @ [] of [] \<Rightarrow> A | y#ys \<Rightarrow> B";
+apply simp
+apply(simp split: list.split)
+oops
+
+
+subsubsection{*Arithmetic*}
+
+lemma "\<lbrakk> \<not> m < n; m < n+1 \<rbrakk> \<Longrightarrow> m = n"
+by simp
+
+lemma "\<not> m < n \<and> m < n+1 \<Longrightarrow> m = n";
+apply simp
+by(arith)
+
+
+subsubsection{*Tracing*}
+
+ML "set trace_simp"
+lemma "rev [a] = []"
+apply(simp)
+oops
+ML "reset trace_simp"
+
+
+
+subsection{*Case Study: Compiling Expressions*}
+
+
+subsubsection{*Expressions*}
+
+types 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v";
+
+datatype ('a,'v)expr = Cex 'v
+                     | Vex 'a
+                     | Bex "'v binop"  "('a,'v)expr"  "('a,'v)expr";
+
+consts value :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v";
+primrec
+"value (Cex v) env = v"
+"value (Vex a) env = env a"
+"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)";
+
+
+subsubsection{*The Stack Machine*}
+
+datatype ('a,'v) instr = Const 'v
+                       | Load 'a
+                       | Apply "'v binop";
+
+consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list";
+primrec
+"exec [] s vs = vs"
+"exec (i#is) s vs = (case i of
+    Const v  \<Rightarrow> exec is s (v#vs)
+  | Load a   \<Rightarrow> exec is s ((s a)#vs)
+  | Apply f  \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))";
+
+
+subsubsection{*The Compiler*}
+
+consts comp :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list";
+primrec
+"comp (Cex v)       = [Const v]"
+"comp (Vex a)       = [Load a]"
+"comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]";
+
+theorem "exec (comp e) s [] = [value e s]";
+oops
+
+theorem "\<forall>vs. exec (comp e) s vs = (value e s) # vs";
+oops
+
+lemma exec_app[simp]:
+  "\<forall>vs. exec (xs@ys) s vs = exec ys s (exec xs s vs)"; 
+apply(induct_tac xs)
+apply(simp)
+apply(simp split: instr.split)
+done
+
+theorem "\<forall>vs. exec (comp e) s vs = (value e s) # vs";
+by(induct_tac e, auto)
+
+
+
+subsection{*Advanced Datatupes*}
+
+
+subsubsection{*Mutual Recursion*}
+
+datatype 'a aexp = IF   "'a bexp" "'a aexp" "'a aexp"
+                 | Sum  "'a aexp" "'a aexp"
+                 | Var 'a
+                 | Num nat
+and      'a bexp = Less "'a aexp" "'a aexp"
+                 | And  "'a bexp" "'a bexp"
+                 | Neg  "'a bexp";
+
+
+consts  evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat"
+        evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool";
+
+primrec
+  "evala (IF b a1 a2) env =
+     (if evalb b env then evala a1 env else evala a2 env)"
+  "evala (Sum a1 a2) env = evala a1 env + evala a2 env"
+  "evala (Var v) env = env v"
+  "evala (Num n) env = n"
+
+  "evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"
+  "evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)"
+  "evalb (Neg b) env = (\<not> evalb b env)"
+
+consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
+       substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
+
+primrec
+  "substa s (IF b a1 a2) =
+     IF (substb s b) (substa s a1) (substa s a2)"
+  "substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"
+  "substa s (Var v) = s v"
+  "substa s (Num n) = Num n"
+
+  "substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"
+  "substb s (And b1 b2) = And (substb s b1) (substb s b2)"
+  "substb s (Neg b) = Neg (substb s b)"
+
+lemma substitution_lemma:
+ "evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and>
+  evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)";
+apply(induct_tac a and b);
+by simp_all
+
+
+subsubsection{*Nested Recursion*}
+
+datatype tree = C "tree list"
+
+term "C[]"
+term "C[C[C[]],C[]]"
+
+consts
+mirror :: "tree \<Rightarrow> tree"
+mirrors:: "tree list \<Rightarrow> tree list";
+
+primrec
+  "mirror(C ts) = C(mirrors ts)"
+
+  "mirrors [] = []"
+  "mirrors (t # ts) = mirrors ts @ [mirror t]"
+
+lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts"
+apply(induct_tac t and ts)
+apply simp_all
+oops
+
+lemma "mirrors ts = rev(map mirror ts)"
+by(induct ts, simp_all)
+
+
+subsubsection{*Datatypes Involving Functions*}
+
+datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree"
+
+term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))"
+
+consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree"
+primrec
+"map_bt f Tip      = Tip"
+"map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))"
+
+lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
+apply(induct_tac T, rename_tac[2] F)
+apply simp_all
+done
+
+(* This is NOT allowed:
+datatype lambda = C "lambda \<Rightarrow> lambda"
+*)
+
+end