--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Overview/Isar.thy Fri Mar 30 16:12:57 2001 +0200
@@ -0,0 +1,30 @@
+theory Isar = Sets:
+
+section{*A Taste of Structured Proofs in Isar*}
+
+lemma [intro?]: "mono f \<Longrightarrow> x \<in> f (lfp f) \<Longrightarrow> x \<in> lfp f"
+ by(simp only: lfp_unfold [symmetric])
+
+lemma "lfp(\<lambda>T. A \<union> M\<inverse> `` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
+ (is "lfp ?F = ?toA")
+proof
+ show "lfp ?F \<subseteq> ?toA"
+ by (blast intro!: lfp_lowerbound intro:rtrancl_trans)
+
+ show "?toA \<subseteq> lfp ?F"
+ proof
+ fix s assume "s \<in> ?toA"
+ then obtain t where stM: "(s,t) \<in> M\<^sup>*" and tA: "t \<in> A" by blast
+ from stM show "s \<in> lfp ?F"
+ proof (rule converse_rtrancl_induct)
+ from tA have "t \<in> ?F (lfp ?F)" by blast
+ with mono_ef show "t \<in> lfp ?F" ..
+ fix s s' assume "(s,s') \<in> M" and "(s',t) \<in> M\<^sup>*" and "s' \<in> lfp ?F"
+ then have "s \<in> ?F (lfp ?F)" by blast
+ with mono_ef show "s \<in> lfp ?F" ..
+ qed
+ qed
+qed
+
+end
+