src/HOL/Predicate.thy
changeset 24345 86a3557a9ebb
parent 23741 1801a921df13
child 26797 a6cb51c314f2
     1.1 --- a/src/HOL/Predicate.thy	Mon Aug 20 18:07:28 2007 +0200
     1.2 +++ b/src/HOL/Predicate.thy	Mon Aug 20 18:07:29 2007 +0200
     1.3 @@ -134,10 +134,10 @@
     1.4  subsection {* Unions of families *}
     1.5  
     1.6  lemma SUP1_iff [simp]: "(SUP x:A. B x) b = (EX x:A. B x b)"
     1.7 -  by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq) blast
     1.8 +  by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
     1.9  
    1.10  lemma SUP2_iff [simp]: "(SUP x:A. B x) b c = (EX x:A. B x b c)"
    1.11 -  by (simp add: SUPR_def Sup_fun_eq Sup_bool_eq) blast
    1.12 +  by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
    1.13  
    1.14  lemma SUP1_I [intro]: "a : A ==> B a b ==> (SUP x:A. B x) b"
    1.15    by auto