src/HOL/Library/Function_Algebras.thy
changeset 38622 86fc906dcd86
parent 35267 8dfd816713c6
child 38642 8fa437809c67
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Function_Algebras.thy	Fri Aug 20 17:48:30 2010 +0200
@@ -0,0 +1,207 @@
+(*  Title:      HOL/Library/Function_Algebras.thy
+    Author:     Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM
+*)
+
+header {* Pointwise instantiation of functions to algebra type classes *}
+
+theory Function_Algebras
+imports Main
+begin
+
+text {* Pointwise operations *}
+
+instantiation "fun" :: (type, plus) plus
+begin
+
+definition
+  "f + g = (\<lambda>x. f x + g x)"
+
+instance ..
+
+end
+
+instantiation "fun" :: (type, zero) zero
+begin
+
+definition
+  "0 = (\<lambda>x. 0)"
+
+instance ..
+
+end
+
+instantiation "fun" :: (type, times) times
+begin
+
+definition
+  "f * g = (\<lambda>x. f x * g x)"
+
+instance ..
+
+end
+
+instantiation "fun" :: (type, one) one
+begin
+
+definition
+  "1 = (\<lambda>x. 1)"
+
+instance ..
+
+end
+
+
+text {* Additive structures *}
+
+instance "fun" :: (type, semigroup_add) semigroup_add proof
+qed (simp add: plus_fun_def add.assoc)
+
+instance "fun" :: (type, cancel_semigroup_add) cancel_semigroup_add proof
+qed (simp_all add: plus_fun_def expand_fun_eq)
+
+instance "fun" :: (type, ab_semigroup_add) ab_semigroup_add proof
+qed (simp add: plus_fun_def add.commute)
+
+instance "fun" :: (type, cancel_ab_semigroup_add) cancel_ab_semigroup_add proof
+qed simp
+
+instance "fun" :: (type, monoid_add) monoid_add proof
+qed (simp_all add: plus_fun_def zero_fun_def)
+
+instance "fun" :: (type, comm_monoid_add) comm_monoid_add proof
+qed simp
+
+instance "fun" :: (type, cancel_comm_monoid_add) cancel_comm_monoid_add ..
+
+instance "fun" :: (type, group_add) group_add proof
+qed (simp_all add: plus_fun_def zero_fun_def fun_Compl_def fun_diff_def diff_minus)
+
+instance "fun" :: (type, ab_group_add) ab_group_add proof
+qed (simp_all add: diff_minus)
+
+
+text {* Multiplicative structures *}
+
+instance "fun" :: (type, semigroup_mult) semigroup_mult proof
+qed (simp add: times_fun_def mult.assoc)
+
+instance "fun" :: (type, ab_semigroup_mult) ab_semigroup_mult proof
+qed (simp add: times_fun_def mult.commute)
+
+instance "fun" :: (type, ab_semigroup_idem_mult) ab_semigroup_idem_mult proof
+qed (simp add: times_fun_def)
+
+instance "fun" :: (type, monoid_mult) monoid_mult proof
+qed (simp_all add: times_fun_def one_fun_def)
+
+instance "fun" :: (type, comm_monoid_mult) comm_monoid_mult proof
+qed simp
+
+
+text {* Misc *}
+
+instance "fun" :: (type, "Rings.dvd") "Rings.dvd" ..
+
+instance "fun" :: (type, mult_zero) mult_zero proof
+qed (simp_all add: zero_fun_def times_fun_def)
+
+instance "fun" :: (type, mult_mono) mult_mono proof
+qed (auto simp add: zero_fun_def times_fun_def le_fun_def intro: mult_left_mono mult_right_mono)
+
+instance "fun" :: (type, mult_mono1) mult_mono1 proof
+qed (auto simp add: zero_fun_def times_fun_def le_fun_def intro: mult_mono1)
+
+instance "fun" :: (type, zero_neq_one) zero_neq_one proof
+qed (simp add: zero_fun_def one_fun_def expand_fun_eq)
+
+
+text {* Ring structures *}
+
+instance "fun" :: (type, semiring) semiring proof
+qed (simp_all add: plus_fun_def times_fun_def algebra_simps)
+
+instance "fun" :: (type, comm_semiring) comm_semiring proof
+qed (simp add: plus_fun_def times_fun_def algebra_simps)
+
+instance "fun" :: (type, semiring_0) semiring_0 ..
+
+instance "fun" :: (type, comm_semiring_0) comm_semiring_0 ..
+
+instance "fun" :: (type, semiring_0_cancel) semiring_0_cancel ..
+
+instance "fun" :: (type, comm_semiring_0_cancel) comm_semiring_0_cancel ..
+
+instance "fun" :: (type, semiring_1) semiring_1 ..
+
+lemma of_nat_fun:
+  shows "of_nat n = (\<lambda>x::'a. of_nat n)"
+proof -
+  have comp: "comp = (\<lambda>f g x. f (g x))"
+    by (rule ext)+ simp
+  have plus_fun: "plus = (\<lambda>f g x. f x + g x)"
+    by (rule ext, rule ext) (fact plus_fun_def)
+  have "of_nat n = (comp (plus (1::'b)) ^^ n) (\<lambda>x::'a. 0)"
+    by (simp add: of_nat_def plus_fun zero_fun_def one_fun_def comp)
+  also have "... = comp ((plus 1) ^^ n) (\<lambda>x::'a. 0)"
+    by (simp only: comp_funpow)
+  finally show ?thesis by (simp add: of_nat_def comp)
+qed
+
+instance "fun" :: (type, comm_semiring_1) comm_semiring_1 ..
+
+instance "fun" :: (type, semiring_1_cancel) semiring_1_cancel ..
+
+instance "fun" :: (type, comm_semiring_1_cancel) comm_semiring_1_cancel ..
+
+instance "fun" :: (type, semiring_char_0) semiring_char_0 proof
+  from inj_of_nat have "inj (\<lambda>n (x::'a). of_nat n :: 'b)"
+    by (rule inj_fun)
+  then have "inj (\<lambda>n. of_nat n :: 'a \<Rightarrow> 'b)"
+    by (simp add: of_nat_fun)
+  then show "inj (of_nat :: nat \<Rightarrow> 'a \<Rightarrow> 'b)" .
+qed
+
+instance "fun" :: (type, ring) ring ..
+
+instance "fun" :: (type, comm_ring) comm_ring ..
+
+instance "fun" :: (type, ring_1) ring_1 ..
+
+instance "fun" :: (type, comm_ring_1) comm_ring_1 ..
+
+instance "fun" :: (type, ring_char_0) ring_char_0 ..
+
+
+text {* Ordereded structures *}
+
+instance "fun" :: (type, ordered_ab_semigroup_add) ordered_ab_semigroup_add proof
+qed (auto simp add: plus_fun_def le_fun_def intro: add_left_mono)
+
+instance "fun" :: (type, ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
+
+instance "fun" :: (type, ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le proof
+qed (simp add: plus_fun_def le_fun_def)
+
+instance "fun" :: (type, ordered_comm_monoid_add) ordered_comm_monoid_add ..
+
+instance "fun" :: (type, ordered_ab_group_add) ordered_ab_group_add ..
+
+instance "fun" :: (type, ordered_semiring) ordered_semiring ..
+
+instance "fun" :: (type, ordered_comm_semiring) ordered_comm_semiring ..
+
+instance "fun" :: (type, ordered_cancel_semiring) ordered_cancel_semiring ..
+
+instance "fun" :: (type, ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..
+
+instance "fun" :: (type, ordered_ring) ordered_ring ..
+
+instance "fun" :: (type, ordered_comm_ring) ordered_comm_ring ..
+
+
+lemmas func_plus = plus_fun_def
+lemmas func_zero = zero_fun_def
+lemmas func_times = times_fun_def
+lemmas func_one = one_fun_def
+
+end