--- a/src/HOL/Complex_Analysis/Great_Picard.thy Tue Mar 25 21:34:36 2025 +0000
+++ b/src/HOL/Complex_Analysis/Great_Picard.thy Wed Mar 26 21:11:04 2025 +0000
@@ -1178,8 +1178,7 @@
have "(\<lambda>z. g z - g z1) holomorphic_on S"
by (intro holomorphic_intros holg)
then obtain r where "0 < r" "ball z2 r \<subseteq> S" "\<And>z. dist z2 z < r \<and> z \<noteq> z2 \<Longrightarrow> g z \<noteq> g z1"
- apply (rule isolated_zeros [of "\<lambda>z. g z - g z1" S z2 z0])
- using S \<open>z0 \<in> S\<close> z0 z12 by auto
+ using isolated_zeros [of "\<lambda>z. g z - g z1" S z2 z0] S \<open>z0 \<in> S\<close> z0 z12 by auto
have "g z2 - g z1 \<noteq> 0"
proof (rule Hurwitz_no_zeros [of "S - {z1}" "\<lambda>n z. \<F> n z - \<F> n z1" "\<lambda>z. g z - g z1"])
show "open (S - {z1})"
@@ -1200,13 +1199,13 @@
then have K: "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> K. dist (\<F> n x) (g x) < e/2"
using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD)
have "uniform_limit {z1} \<F> g sequentially"
- by (simp add: ul_g z12)
+ by (intro ul_g) (auto simp: z12)
then have "\<forall>\<^sub>F n in sequentially. \<forall>x \<in> {z1}. dist (\<F> n x) (g x) < e/2"
using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD)
then have z1: "\<forall>\<^sub>F n in sequentially. dist (\<F> n z1) (g z1) < e/2"
by simp
show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e"
- apply (rule eventually_mono [OF eventually_conj [OF K z1]])
+ apply (intro eventually_mono [OF eventually_conj [OF K z1]])
by (metis (no_types, opaque_lifting) diff_add_eq diff_diff_eq2 dist_commute dist_norm dist_triangle_add_half)
qed
show "\<not> (\<lambda>z. g z - g z1) constant_on S - {z1}"