src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff.ML
changeset 23466 886655a150f6
parent 23465 8f8835aac299
child 23467 d1b97708d5eb
--- a/src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,263 +0,0 @@
-(* Title:      HOL/Tools/ferrante_rackoff.ML
-   ID:         $Id$
-   Author:     Amine Chaieb, TU Muenchen
-
-Ferrante and Rackoff's algorithm for quantifier elimination in dense
-linear orders.  Proof-synthesis and tactic.
-*)
-
-signature FERRANTE_RACKOFF = 
-sig
-  val dlo_tac: Proof.context -> int -> tactic
-end;
-
-structure FerranteRackoff: FERRANTE_RACKOFF =
-struct
-
-open Ferrante_Rackoff_Data;
-open Conv;
-
-type entry = {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
-   ld: thm list, qe: thm, atoms : cterm list} *
-  {isolate_conv: cterm list -> cterm -> thm, 
-                 whatis : cterm -> cterm -> ord,
-                 simpset : simpset};
-
-fun binop_cong b th1 th2 = Thm.combination (Drule.arg_cong_rule b th1) th2;
-val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
-fun C f x y = f y x
-
-fun get_p1 th = 
- let 
-    fun appair f (x,y) = (f x, f y)
-  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
-     (funpow 2 Thm.dest_arg (cprop_of th)) |> Thm.dest_arg 
-end;
-
-fun ferrack_conv
-   (entr as ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, 
-              ld = ld, qe = qe, atoms = atoms},
-             {isolate_conv = icv, whatis = wi, simpset = simpset}):entry) = 
-let 
- fun uset (vars as (x::vs)) p = case term_of p of
-   Const("op &", _)$ _ $ _ => 
-     let 
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, binop_cong b lth rth) end
- |  Const("op |", _)$ _ $ _ => 
-     let 
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, binop_cong b lth rth) end
- | _ => 
-    let 
-      val th = icv vars p 
-      val p' = Thm.rhs_of th
-      val c = wi x p'
-      val S = (if c mem [Lt, Le, Eq] then single o Thm.dest_arg
-               else if c mem [Gt, Ge] then single o Thm.dest_arg1
-               else if c = NEq then single o Thm.dest_arg o Thm.dest_arg 
-               else K []) p'
-    in (S,th) end
-
- val ((p1_v,p2_v),(mp1_v,mp2_v)) = 
-  let
-   fun appair f (x,y) = (f x, f y)
-  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
-       (funpow 4 Thm.dest_arg (cprop_of (hd minf))) 
-     |> Thm.dest_binop |> appair Thm.dest_binop |> apfst (appair Thm.dest_fun)  
-  end
-
- fun myfwd (th1, th2, th3, th4, th5) p1 p2 
-      [(th_1,th_2,th_3,th_4,th_5), (th_1',th_2',th_3',th_4',th_5')] = 
-  let  
-   val (mp1, mp2) = (get_p1 th_1, get_p1 th_1')
-   val (pp1, pp2) = (get_p1 th_2, get_p1 th_2')
-   fun fw mi th th' th'' = 
-     let 
-      val th0 = if mi then 
-           instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, mp1), (mp2_v, mp2)]) th
-        else instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, pp1), (mp2_v, pp2)]) th
-     in implies_elim (implies_elim th0 th') th'' end
-  in (fw true th1 th_1 th_1', fw false th2 th_2 th_2', 
-      fw true th3 th_3 th_3', fw false th4 th_4 th_4', fw true th5 th_5 th_5') 
-  end
- val U_v = (Thm.dest_arg o Thm.dest_arg o Thm.dest_arg1) (cprop_of qe)
- fun main vs p = 
-  let 
-   val ((xn,ce),(x,fm)) = (case term_of p of 
-                   Const("Ex",_)$Abs(xn,xT,_) =>  
-                        Thm.dest_comb p ||> Thm.dest_abs (SOME xn) |>> pair xn
-                 | _ => error "main QE only trats existential quantifiers!")
-   val cT = ctyp_of_term x
-   val (u,nth) = uset (x::vs) fm |>> distinct (op aconvc)
-   val nthx = Thm.abstract_rule xn x nth
-   val q = Thm.rhs_of nth
-   val qx = Thm.rhs_of nthx
-   val enth = Drule.arg_cong_rule ce nthx
-   val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
-   fun ins x th = 
-      implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg) 
-                                       (Thm.cprop_of th), SOME x] th1) th
-   val fU = fold ins u th0
-   val cU = funpow 2 Thm.dest_arg (Thm.cprop_of fU)
-   local 
-     val insI1 = instantiate' [SOME cT] [] @{thm "insertI1"}
-     val insI2 = instantiate' [SOME cT] [] @{thm "insertI2"}
-   in
-    fun provein x S = 
-     case term_of S of
-        Const("{}",_) => error "provein : not a member!"
-      | Const("insert",_)$y$_ => 
-         let val (cy,S') = Thm.dest_binop S
-         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
-         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
-                           (provein x S')
-         end
-   end
-   val tabU = fold (fn t => fn tab => Termtab.update (term_of t, provein t cU) tab) 
-                   u Termtab.empty
-   val U = valOf o Termtab.lookup tabU o term_of
-   val [minf_conj, minf_disj, minf_eq, minf_neq, minf_lt, 
-        minf_le, minf_gt, minf_ge, minf_P] = minf
-   val [pinf_conj, pinf_disj, pinf_eq, pinf_neq, pinf_lt, 
-        pinf_le, pinf_gt, pinf_ge, pinf_P] = pinf
-   val [nmi_conj, nmi_disj, nmi_eq, nmi_neq, nmi_lt, 
-        nmi_le, nmi_gt, nmi_ge, nmi_P] = map (instantiate ([],[(U_v,cU)])) nmi
-   val [npi_conj, npi_disj, npi_eq, npi_neq, npi_lt, 
-        npi_le, npi_gt, npi_ge, npi_P] = map (instantiate ([],[(U_v,cU)])) npi
-   val [ld_conj, ld_disj, ld_eq, ld_neq, ld_lt, 
-        ld_le, ld_gt, ld_ge, ld_P] = map (instantiate ([],[(U_v,cU)])) ld
-  
-   fun decomp_mpinf fm = 
-     case term_of fm of
-       Const("op &",_)$_$_ => 
-        let val (p,q) = Thm.dest_binop fm 
-        in ([p,q], myfwd (minf_conj,pinf_conj, nmi_conj, npi_conj,ld_conj) 
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | Const("op |",_)$_$_ => 
-        let val (p,q) = Thm.dest_binop fm 
-        in ([p,q],myfwd (minf_disj, pinf_disj, nmi_disj, npi_disj,ld_disj)
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | _ => 
-        (let val c = wi x fm
-             val t = (if c=Nox then I 
-                      else if c mem [Lt, Le, Eq] then Thm.dest_arg
-                      else if c mem [Gt,Ge] then Thm.dest_arg1
-                      else if c = NEq then (Thm.dest_arg o Thm.dest_arg) 
-                      else error "decomp_mpinf: Impossible case!!") fm
-             val [mi_th, pi_th, nmi_th, npi_th, ld_th] = 
-               if c = Nox then map (instantiate' [] [SOME fm]) 
-                                    [minf_P, pinf_P, nmi_P, npi_P, ld_P]
-               else 
-                let val [mi_th,pi_th,nmi_th,npi_th,ld_th] = 
-                 map (instantiate' [] [SOME t])
-                 (case c of Lt => [minf_lt, pinf_lt, nmi_lt, npi_lt, ld_lt]
-                          | Le => [minf_le, pinf_le, nmi_le, npi_le, ld_le]
-                          | Gt => [minf_gt, pinf_gt, nmi_gt, npi_gt, ld_gt]
-                          | Ge => [minf_ge, pinf_ge, nmi_ge, npi_ge, ld_ge]
-                          | Eq => [minf_eq, pinf_eq, nmi_eq, npi_eq, ld_eq]
-                          | NEq => [minf_neq, pinf_neq, nmi_neq, npi_neq, ld_neq])
-                    val tU = U t
-                    fun Ufw th = implies_elim th tU
-                 in [mi_th, pi_th, Ufw nmi_th, Ufw npi_th, Ufw ld_th]
-                 end
-         in ([], K (mi_th, pi_th, nmi_th, npi_th, ld_th)) end)
-   val (minf_th, pinf_th, nmi_th, npi_th, ld_th) = divide_and_conquer decomp_mpinf q
-   val qe_th = fold (C implies_elim)  [fU, ld_th, nmi_th, npi_th, minf_th, pinf_th] 
-                  ((fconv_rule (Thm.beta_conversion true)) 
-                   (instantiate' [] (map SOME [cU, qx, get_p1 minf_th, get_p1 pinf_th]) 
-                        qe))
-    val bex_conv = 
-      Simplifier.rewrite (HOL_basic_ss addsimps simp_thms@(@{thms "bex_simps" (1-5)}))
-    val result_th = fconv_rule (arg_conv bex_conv) (transitive enth qe_th)
-   in result_th
-   end
-
-in main
-end;
-
-val grab_atom_bop = 
- let 
-  fun h bounds tm =
-   (case term_of tm of
-     Const ("op =", T) $ _ $ _ =>
-       if domain_type T = HOLogic.boolT then find_args bounds tm 
-       else Thm.dest_fun2 tm
-   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
-   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("op &", _) $ _ $ _ => find_args bounds tm
-   | Const ("op |", _) $ _ $ _ => find_args bounds tm
-   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
-   | Const ("==>", _) $ _ $ _ => find_args bounds tm
-   | Const ("==", _) $ _ $ _ => find_args bounds tm
-   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
-   | _ => Thm.dest_fun2 tm)
-  and find_args bounds tm = 
-           (h bounds (Thm.dest_arg tm) handle CTERM _ => Thm.dest_arg1 tm)
- and find_body bounds b =
-   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
-   in h (bounds + 1) b' end;
-in h end;
-
-local
-fun cterm_frees ct = 
- let fun h acc t = 
-   case (term_of t) of 
-    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | Free _ => insert (op aconvc) t acc
-  | _ => acc
- in h [] ct end;
-in
-
-fun raw_ferrack_qe_conv ctxt (thy, {isolate_conv, whatis, simpset}) tm = 
- let 
-   val ss = simpset
-   val pcv = Simplifier.rewrite 
-     (merge_ss (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps)
-              @ [not_all,@{thm "all_not_ex"}, ex_disj_distrib], ss))
-    val postcv = Simplifier.rewrite ss
-    val nnf = K (nnf_conv then_conv postcv)
-    val qe_conv = Qelim.gen_qelim_conv ctxt pcv postcv pcv cons (cterm_frees tm) 
-                  (isolate_conv ctxt) nnf
-                  (fn vs => ferrack_conv (thy,{isolate_conv = isolate_conv ctxt, 
-                                               whatis = whatis, simpset = simpset}) vs
-                   then_conv postcv)
- in (Simplifier.rewrite ss then_conv qe_conv) tm
- end
-
-fun ferrackqe_conv ctxt tm = 
- case Ferrante_Rackoff_Data.match ctxt (grab_atom_bop 0 tm) of
-  NONE => error "ferrackqe_conv : no corresponding instance in context!"
-| SOME res => raw_ferrack_qe_conv ctxt res tm
-end;
-
-fun core_ferrack_tac ctxt res i st =
- let val p = nth (cprems_of st) (i - 1)
-     val th = symmetric (arg_conv (raw_ferrack_qe_conv ctxt res) p)
-     val p' = Thm.lhs_of th
-     val th' = implies_intr p' (equal_elim th (assume p')) 
-     val _ = print_thm th
-  in (rtac th' i) st 
-  end
-
-fun dlo_tac ctxt i st = 
- let 
-   val instance = (case Ferrante_Rackoff_Data.match ctxt 
-                           (grab_atom_bop 0 (nth (cprems_of st) (i - 1))) of 
-                    NONE => error "ferrackqe_conv : no corresponding instance in context!"
-                  | SOME r => r)
-   val ss = #simpset (snd instance)
-   in
-   (ObjectLogic.full_atomize_tac i THEN 
-    simp_tac ss i THEN
-    core_ferrack_tac ctxt instance i THEN 
-    (TRY (simp_tac (Simplifier.local_simpset_of ctxt) i))) st
-  end;
-
-end;