src/ZF/add_ind_def.ML
changeset 6053 8a1059aa01f0
parent 6052 4f093e55beeb
child 6054 4a4f6ad607a1
--- a/src/ZF/add_ind_def.ML	Mon Dec 28 16:58:11 1998 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,270 +0,0 @@
-(*  Title:      ZF/add_ind_def.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Fixedpoint definition module -- for Inductive/Coinductive Definitions
-
-Features:
-* least or greatest fixedpoints
-* user-specified product and sum constructions
-* mutually recursive definitions
-* definitions involving arbitrary monotone operators
-* automatically proves introduction and elimination rules
-
-The recursive sets must *already* be declared as constants in parent theory!
-
-  Introduction rules have the form
-  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
-  where M is some monotone operator (usually the identity)
-  P(x) is any (non-conjunctive) side condition on the free variables
-  ti, t are any terms
-  Sj, Sk are two of the sets being defined in mutual recursion
-
-Sums are used only for mutual recursion;
-Products are used only to derive "streamlined" induction rules for relations
-*)
-
-signature FP =          (** Description of a fixed point operator **)
-  sig
-  val oper      : term                  (*fixed point operator*)
-  val bnd_mono  : term                  (*monotonicity predicate*)
-  val bnd_monoI : thm                   (*intro rule for bnd_mono*)
-  val subs      : thm                   (*subset theorem for fp*)
-  val Tarski    : thm                   (*Tarski's fixed point theorem*)
-  val induct    : thm                   (*induction/coinduction rule*)
-  end;
-
-signature SU =                  (** Description of a disjoint sum **)
-  sig
-  val sum       : term                  (*disjoint sum operator*)
-  val inl       : term                  (*left injection*)
-  val inr       : term                  (*right injection*)
-  val elim      : term                  (*case operator*)
-  val case_inl  : thm                   (*inl equality rule for case*)
-  val case_inr  : thm                   (*inr equality rule for case*)
-  val inl_iff   : thm                   (*injectivity of inl, using <->*)
-  val inr_iff   : thm                   (*injectivity of inr, using <->*)
-  val distinct  : thm                   (*distinctness of inl, inr using <->*)
-  val distinct' : thm                   (*distinctness of inr, inl using <->*)
-  val free_SEs  : thm list              (*elim rules for SU, and pair_iff!*)
-  end;
-
-signature ADD_INDUCTIVE_DEF =
-  sig 
-  val add_fp_def_i : term list * term * term list -> theory -> theory
-  val add_constructs_def :
-        string list * ((string*typ*mixfix) * 
-                       string * term list * term list) list list ->
-        theory -> theory
-  end;
-
-
-
-(*Declares functions to add fixedpoint/constructor defs to a theory*)
-functor Add_inductive_def_Fun 
-    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU)
-    : ADD_INDUCTIVE_DEF =
-struct
-open Logic Ind_Syntax;
-
-(*internal version*)
-fun add_fp_def_i (rec_tms, dom_sum, intr_tms) thy = 
-  let
-    val dummy = (*has essential ancestors?*)
-	Theory.requires thy "Inductive" "(co)inductive definitions" 
-
-    val sign = sign_of thy;
-
-    (*recT and rec_params should agree for all mutually recursive components*)
-    val rec_hds = map head_of rec_tms;
-
-    val dummy = assert_all is_Const rec_hds
-            (fn t => "Recursive set not previously declared as constant: " ^ 
-                     Sign.string_of_term sign t);
-
-    (*Now we know they are all Consts, so get their names, type and params*)
-    val rec_names = map (#1 o dest_Const) rec_hds
-    and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
-
-    val rec_base_names = map Sign.base_name rec_names;
-    val dummy = assert_all Syntax.is_identifier rec_base_names
-      (fn a => "Base name of recursive set not an identifier: " ^ a);
-
-    local (*Checking the introduction rules*)
-      val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
-      fun intr_ok set =
-          case head_of set of Const(a,recT) => a mem rec_names | _ => false;
-    in
-      val dummy =  assert_all intr_ok intr_sets
-         (fn t => "Conclusion of rule does not name a recursive set: " ^ 
-                  Sign.string_of_term sign t);
-    end;
-
-    val dummy = assert_all is_Free rec_params
-        (fn t => "Param in recursion term not a free variable: " ^
-                 Sign.string_of_term sign t);
-
-    (*** Construct the lfp definition ***)
-    val mk_variant = variant (foldr add_term_names (intr_tms,[]));
-
-    val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
-
-    fun dest_tprop (Const("Trueprop",_) $ P) = P
-      | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^ 
-                              Sign.string_of_term sign Q);
-
-    (*Makes a disjunct from an introduction rule*)
-    fun lfp_part intr = (*quantify over rule's free vars except parameters*)
-      let val prems = map dest_tprop (strip_imp_prems intr)
-          val dummy = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
-          val exfrees = term_frees intr \\ rec_params
-          val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr))
-      in foldr FOLogic.mk_exists
-	       (exfrees, fold_bal (app FOLogic.conj) (zeq::prems)) 
-      end;
-
-    (*The Part(A,h) terms -- compose injections to make h*)
-    fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
-      | mk_Part h         = Part_const $ Free(X',iT) $ Abs(w',iT,h);
-
-    (*Access to balanced disjoint sums via injections*)
-    val parts = 
-        map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0) 
-                                  (length rec_tms));
-
-    (*replace each set by the corresponding Part(A,h)*)
-    val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;
-
-    val lfp_abs = absfree(X', iT, 
-                     mk_Collect(z', dom_sum, 
-				fold_bal (app FOLogic.disj) part_intrs));
-
-    val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs
-
-    val dummy = seq (fn rec_hd => deny (rec_hd occs lfp_rhs) 
-                               "Illegal occurrence of recursion operator")
-             rec_hds;
-
-    (*** Make the new theory ***)
-
-    (*A key definition:
-      If no mutual recursion then it equals the one recursive set.
-      If mutual recursion then it differs from all the recursive sets. *)
-    val big_rec_base_name = space_implode "_" rec_base_names;
-    val big_rec_name = Sign.intern_const sign big_rec_base_name;
-
-    (*Big_rec... is the union of the mutually recursive sets*)
-    val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
-
-    (*The individual sets must already be declared*)
-    val axpairs = map Logic.mk_defpair 
-          ((big_rec_tm, lfp_rhs) ::
-           (case parts of 
-               [_] => []                        (*no mutual recursion*)
-             | _ => rec_tms ~~          (*define the sets as Parts*)
-                    map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
-
-    (*tracing: print the fixedpoint definition*)
-    val _ = if !Ind_Syntax.trace then
-		seq (writeln o Sign.string_of_term sign o #2) axpairs
-            else ()
-
-  in  thy |> PureThy.add_defs_i (map Attribute.none axpairs)  end
-
-
-(*Expects the recursive sets to have been defined already.
-  con_ty_lists specifies the constructors in the form (name,prems,mixfix) *)
-fun add_constructs_def (rec_base_names, con_ty_lists) thy = 
-  let
-    val dummy = (*has essential ancestors?*)
-      Theory.requires thy "Datatype" "(co)datatype definitions";
-
-    val sign = sign_of thy;
-    val full_name = Sign.full_name sign;
-
-    val dummy = writeln"  Defining the constructor functions...";
-    val case_name = "f";                (*name for case variables*)
-
-
-    (** Define the constructors **)
-
-    (*The empty tuple is 0*)
-    fun mk_tuple [] = Const("0",iT)
-      | mk_tuple args = foldr1 (app Pr.pair) args;
-
-    fun mk_inject n k u = access_bal (ap Su.inl, ap Su.inr, u) n k;
-
-    val npart = length rec_base_names;       (*total # of mutually recursive parts*)
-
-    (*Make constructor definition; kpart is # of this mutually recursive part*)
-    fun mk_con_defs (kpart, con_ty_list) = 
-      let val ncon = length con_ty_list    (*number of constructors*)
-          fun mk_def (((id,T,syn), name, args, prems), kcon) =
-                (*kcon is index of constructor*)
-              mk_defpair (list_comb (Const (full_name name, T), args),
-                          mk_inject npart kpart
-                          (mk_inject ncon kcon (mk_tuple args)))
-      in  ListPair.map mk_def (con_ty_list, 1 upto ncon)  end;
-
-    (** Define the case operator **)
-
-    (*Combine split terms using case; yields the case operator for one part*)
-    fun call_case case_list = 
-      let fun call_f (free,[]) = Abs("null", iT, free)
-            | call_f (free,args) =
-                  CP.ap_split (foldr1 CP.mk_prod (map (#2 o dest_Free) args))
-                              Ind_Syntax.iT 
-                              free 
-      in  fold_bal (app Su.elim) (map call_f case_list)  end;
-
-    (** Generating function variables for the case definition
-        Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
-
-    (*Treatment of a single constructor*)
-    fun add_case (((_, T, _), name, args, prems), (opno, cases)) =
-      if Syntax.is_identifier name then
-        (opno, (Free (case_name ^ "_" ^ name, T), args) :: cases)
-      else
-        (opno + 1, (Free (case_name ^ "_op_" ^ string_of_int opno, T), args) :: cases);
-
-    (*Treatment of a list of constructors, for one part*)
-    fun add_case_list (con_ty_list, (opno, case_lists)) =
-      let val (opno', case_list) = foldr add_case (con_ty_list, (opno, []))
-      in (opno', case_list :: case_lists) end;
-
-    (*Treatment of all parts*)
-    val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
-
-    val big_case_typ = flat (map (map (#2 o #1)) con_ty_lists) ---> (iT-->iT);
-
-    val big_rec_base_name = space_implode "_" rec_base_names;
-    val big_case_base_name = big_rec_base_name ^ "_case";
-    val big_case_name = full_name big_case_base_name;
-
-    (*The list of all the function variables*)
-    val big_case_args = flat (map (map #1) case_lists);
-
-    val big_case_tm =
-      list_comb (Const (big_case_name, big_case_typ), big_case_args); 
-
-    val big_case_def = mk_defpair
-      (big_case_tm, fold_bal (app Su.elim) (map call_case case_lists));
-
-
-    (* Build the new theory *)
-
-    val const_decs =
-      (big_case_base_name, big_case_typ, NoSyn) :: map #1 (flat con_ty_lists);
-
-    val axpairs =
-      big_case_def :: flat (ListPair.map mk_con_defs (1 upto npart, con_ty_lists));
-
-  in
-    thy
-    |> Theory.add_consts_i const_decs
-    |> PureThy.add_defs_i (map Attribute.none axpairs)
-  end;
-
-
-end;