src/ZF/indrule.ML
changeset 6053 8a1059aa01f0
parent 6052 4f093e55beeb
child 6054 4a4f6ad607a1
--- a/src/ZF/indrule.ML	Mon Dec 28 16:58:11 1998 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,276 +0,0 @@
-(*  Title:      ZF/indrule.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Induction rule module -- for Inductive/Coinductive Definitions
-
-Proves a strong induction rule and a mutual induction rule
-*)
-
-signature INDRULE =
-  sig
-  val induct        : thm                       (*main induction rule*)
-  val mutual_induct : thm                       (*mutual induction rule*)
-  end;
-
-
-functor Indrule_Fun
-    (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end
-     and Pr: PR and CP: CARTPROD and Su : SU and 
-     Intr_elim: sig include INTR_ELIM INTR_ELIM_AUX end) : INDRULE  =
-let
-
-val sign = sign_of Inductive.thy;
-
-val (Const(_,recT),rec_params) = strip_comb (hd Inductive.rec_tms);
-
-val big_rec_name =
-  Sign.intern_const sign (space_implode "_" (map Sign.base_name Intr_elim.rec_names));
-
-val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
-
-val _ = writeln "  Proving the induction rule...";
-
-(*** Prove the main induction rule ***)
-
-val pred_name = "P";            (*name for predicate variables*)
-
-val big_rec_def::part_rec_defs = Intr_elim.defs;
-
-(*Used to make induction rules;
-   ind_alist = [(rec_tm1,pred1),...]  -- associates predicates with rec ops
-   prem is a premise of an intr rule*)
-fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $ 
-                 (Const("op :",_)$t$X), iprems) =
-     (case gen_assoc (op aconv) (ind_alist, X) of
-          Some pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems
-        | None => (*possibly membership in M(rec_tm), for M monotone*)
-            let fun mk_sb (rec_tm,pred) = 
-                        (rec_tm, Ind_Syntax.Collect_const$rec_tm$pred)
-            in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
-  | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
-
-(*Make a premise of the induction rule.*)
-fun induct_prem ind_alist intr =
-  let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
-      val iprems = foldr (add_induct_prem ind_alist)
-                         (Logic.strip_imp_prems intr,[])
-      val (t,X) = Ind_Syntax.rule_concl intr
-      val (Some pred) = gen_assoc (op aconv) (ind_alist, X)
-      val concl = FOLogic.mk_Trueprop (pred $ t)
-  in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
-  handle Bind => error"Recursion term not found in conclusion";
-
-(*Minimizes backtracking by delivering the correct premise to each goal.
-  Intro rules with extra Vars in premises still cause some backtracking *)
-fun ind_tac [] 0 = all_tac
-  | ind_tac(prem::prems) i = 
-        DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN
-        ind_tac prems (i-1);
-
-val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT);
-
-val ind_prems = map (induct_prem (map (rpair pred) Inductive.rec_tms)) 
-                    Inductive.intr_tms;
-
-val _ = if !Ind_Syntax.trace then 
-            (writeln "ind_prems = ";
-	     seq (writeln o Sign.string_of_term sign) ind_prems;
-	     writeln "raw_induct = "; print_thm Intr_elim.raw_induct)
-        else ();
-
-
-(*We use a MINIMAL simpset because others (such as FOL_ss) contain too many
-  simplifications.  If the premises get simplified, then the proofs could 
-  fail.  *)
-val min_ss = empty_ss
-      setmksimps (map mk_eq o ZF_atomize o gen_all)
-      setSolver  (fn prems => resolve_tac (triv_rls@prems) 
-                              ORELSE' assume_tac
-                              ORELSE' etac FalseE);
-
-val quant_induct = 
-    prove_goalw_cterm part_rec_defs 
-      (cterm_of sign 
-       (Logic.list_implies (ind_prems, 
-                FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp(big_rec_tm,pred)))))
-      (fn prems =>
-       [rtac (impI RS allI) 1,
-        DETERM (etac Intr_elim.raw_induct 1),
-        (*Push Part inside Collect*)
-        full_simp_tac (min_ss addsimps [Part_Collect]) 1,
-        (*This CollectE and disjE separates out the introduction rules*)
-	REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])),
-	(*Now break down the individual cases.  No disjE here in case
-          some premise involves disjunction.*)
-        REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE] 
-                           ORELSE' hyp_subst_tac)),
-        ind_tac (rev prems) (length prems) ]);
-
-val _ = if !Ind_Syntax.trace then 
-            (writeln "quant_induct = "; print_thm quant_induct)
-        else ();
-
-
-(*** Prove the simultaneous induction rule ***)
-
-(*Make distinct predicates for each inductive set*)
-
-(*The components of the element type, several if it is a product*)
-val elem_type = CP.pseudo_type Inductive.dom_sum;
-val elem_factors = CP.factors elem_type;
-val elem_frees = mk_frees "za" elem_factors;
-val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees;
-
-(*Given a recursive set and its domain, return the "fsplit" predicate
-  and a conclusion for the simultaneous induction rule.
-  NOTE.  This will not work for mutually recursive predicates.  Previously
-  a summand 'domt' was also an argument, but this required the domain of
-  mutual recursion to invariably be a disjoint sum.*)
-fun mk_predpair rec_tm = 
-  let val rec_name = (#1 o dest_Const o head_of) rec_tm
-      val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name,
-                       elem_factors ---> FOLogic.oT)
-      val qconcl = 
-        foldr FOLogic.mk_all
-          (elem_frees, 
-           FOLogic.imp $ 
-           (Ind_Syntax.mem_const $ elem_tuple $ rec_tm)
-                 $ (list_comb (pfree, elem_frees)))
-  in  (CP.ap_split elem_type FOLogic.oT pfree, 
-       qconcl)  
-  end;
-
-val (preds,qconcls) = split_list (map mk_predpair Inductive.rec_tms);
-
-(*Used to form simultaneous induction lemma*)
-fun mk_rec_imp (rec_tm,pred) = 
-    FOLogic.imp $ (Ind_Syntax.mem_const $ Bound 0 $ rec_tm) $ 
-                     (pred $ Bound 0);
-
-(*To instantiate the main induction rule*)
-val induct_concl = 
-    FOLogic.mk_Trueprop
-      (Ind_Syntax.mk_all_imp
-       (big_rec_tm,
-        Abs("z", Ind_Syntax.iT, 
-            fold_bal (app FOLogic.conj) 
-            (ListPair.map mk_rec_imp (Inductive.rec_tms,preds)))))
-and mutual_induct_concl =
- FOLogic.mk_Trueprop(fold_bal (app FOLogic.conj) qconcls);
-
-val _ = if !Ind_Syntax.trace then 
-            (writeln ("induct_concl = " ^
-		      Sign.string_of_term sign induct_concl);
-             writeln ("mutual_induct_concl = " ^
-		      Sign.string_of_term sign mutual_induct_concl))
-        else ();
-
-
-val lemma_tac = FIRST' [eresolve_tac [asm_rl, conjE, PartE, mp],
-                        resolve_tac [allI, impI, conjI, Part_eqI],
-                        dresolve_tac [spec, mp, Pr.fsplitD]];
-
-val need_mutual = length Intr_elim.rec_names > 1;
-
-val lemma = (*makes the link between the two induction rules*)
-  if need_mutual then
-     (writeln "  Proving the mutual induction rule...";
-      prove_goalw_cterm part_rec_defs 
-	    (cterm_of sign (Logic.mk_implies (induct_concl,
-					      mutual_induct_concl)))
-	    (fn prems =>
-	     [cut_facts_tac prems 1, 
-	      REPEAT (rewrite_goals_tac [Pr.split_eq] THEN
-		      lemma_tac 1)]))
-  else (writeln "  [ No mutual induction rule needed ]";
-        TrueI);
-
-val _ = if !Ind_Syntax.trace then 
-            (writeln "lemma = "; print_thm lemma)
-        else ();
-
-
-(*Mutual induction follows by freeness of Inl/Inr.*)
-
-(*Simplification largely reduces the mutual induction rule to the 
-  standard rule*)
-val mut_ss = 
-    min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];
-
-val all_defs = Inductive.con_defs @ part_rec_defs;
-
-(*Removes Collects caused by M-operators in the intro rules.  It is very
-  hard to simplify
-    list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))}) 
-  where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
-  Instead the following rules extract the relevant conjunct.
-*)
-val cmonos = [subset_refl RS Collect_mono] RL Inductive.monos
-              RLN (2,[rev_subsetD]);
-
-(*Minimizes backtracking by delivering the correct premise to each goal*)
-fun mutual_ind_tac [] 0 = all_tac
-  | mutual_ind_tac(prem::prems) i = 
-      DETERM
-       (SELECT_GOAL 
-          (
-           (*Simplify the assumptions and goal by unfolding Part and
-             using freeness of the Sum constructors; proves all but one
-             conjunct by contradiction*)
-           rewrite_goals_tac all_defs  THEN
-           simp_tac (mut_ss addsimps [Part_iff]) 1  THEN
-           IF_UNSOLVED (*simp_tac may have finished it off!*)
-             ((*simplify assumptions*)
-              (*some risk of excessive simplification here -- might have
-                to identify the bare minimum set of rewrites*)
-              full_simp_tac 
-                 (mut_ss addsimps conj_simps @ imp_simps @ quant_simps) 1
-              THEN
-              (*unpackage and use "prem" in the corresponding place*)
-              REPEAT (rtac impI 1)  THEN
-              rtac (rewrite_rule all_defs prem) 1  THEN
-              (*prem must not be REPEATed below: could loop!*)
-              DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE' 
-                                      eresolve_tac (conjE::mp::cmonos))))
-          ) i)
-       THEN mutual_ind_tac prems (i-1);
-
-val mutual_induct_fsplit = 
-  if need_mutual then
-    prove_goalw_cterm []
-          (cterm_of sign
-           (Logic.list_implies 
-              (map (induct_prem (Inductive.rec_tms~~preds)) Inductive.intr_tms,
-               mutual_induct_concl)))
-          (fn prems =>
-           [rtac (quant_induct RS lemma) 1,
-            mutual_ind_tac (rev prems) (length prems)])
-  else TrueI;
-
-(** Uncurrying the predicate in the ordinary induction rule **)
-
-(*instantiate the variable to a tuple, if it is non-trivial, in order to
-  allow the predicate to be "opened up".
-  The name "x.1" comes from the "RS spec" !*)
-val inst = 
-    case elem_frees of [_] => I
-       | _ => instantiate ([], [(cterm_of sign (Var(("x",1), Ind_Syntax.iT)), 
-                                 cterm_of sign elem_tuple)]);
-
-(*strip quantifier and the implication*)
-val induct0 = inst (quant_induct RS spec RSN (2,rev_mp));
-
-val Const ("Trueprop", _) $ (pred_var $ _) = concl_of induct0
-
-in
-  struct
-  (*strip quantifier*)
-  val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0) 
-               |> standard;
-
-  (*Just "True" unless there's true mutual recursion.  This saves storage.*)
-  val mutual_induct = CP.remove_split mutual_induct_fsplit
-  end
-end;