src/ZF/intr_elim.ML
changeset 6053 8a1059aa01f0
parent 6052 4f093e55beeb
child 6054 4a4f6ad607a1
--- a/src/ZF/intr_elim.ML	Mon Dec 28 16:58:11 1998 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,165 +0,0 @@
-(*  Title:      ZF/intr_elim.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Introduction/elimination rule module -- for Inductive/Coinductive Definitions
-*)
-
-signature INDUCTIVE_ARG =       (** Description of a (co)inductive def **)
-  sig
-  val thy        : theory               (*new theory with inductive defs*)
-  val monos      : thm list             (*monotonicity of each M operator*)
-  val con_defs   : thm list             (*definitions of the constructors*)
-  val type_intrs : thm list             (*type-checking intro rules*)
-  val type_elims : thm list             (*type-checking elim rules*)
-  end;
-
-
-signature INDUCTIVE_I =         (** Terms read from the theory section **)
-  sig
-  val rec_tms    : term list            (*the recursive sets*)
-  val dom_sum    : term                 (*their common domain*)
-  val intr_tms   : term list            (*terms for the introduction rules*)
-  end;
-
-signature INTR_ELIM =
-  sig
-  val thy        : theory               (*copy of input theory*)
-  val defs       : thm list             (*definitions made in thy*)
-  val bnd_mono   : thm                  (*monotonicity for the lfp definition*)
-  val dom_subset : thm                  (*inclusion of recursive set in dom*)
-  val intrs      : thm list             (*introduction rules*)
-  val elim       : thm                  (*case analysis theorem*)
-  val mk_cases   : thm list -> string -> thm    (*generates case theorems*)
-  end;
-
-signature INTR_ELIM_AUX =       (** Used to make induction rules **)
-  sig
-  val raw_induct : thm                  (*raw induction rule from Fp.induct*)
-  val rec_names  : string list          (*names of recursive sets*)
-  end;
-
-(*prove intr/elim rules for a fixedpoint definition*)
-functor Intr_elim_Fun
-    (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end  
-     and Fp: FP and Pr : PR and Su : SU) 
-    : sig include INTR_ELIM INTR_ELIM_AUX end =
-let
-
-val rec_names = map (#1 o dest_Const o head_of) Inductive.rec_tms;
-val big_rec_base_name = space_implode "_" (map Sign.base_name rec_names);
-
-val _ = deny (big_rec_base_name mem (Sign.stamp_names_of (sign_of Inductive.thy)))
-             ("Definition " ^ big_rec_base_name ^ 
-              " would clash with the theory of the same name!");
-
-(*fetch fp definitions from the theory*)
-val big_rec_def::part_rec_defs = 
-  map (get_def Inductive.thy)
-      (case rec_names of [_] => rec_names | _ => big_rec_base_name::rec_names);
-
-
-val sign = sign_of Inductive.thy;
-
-(********)
-val _ = writeln "  Proving monotonicity...";
-
-val Const("==",_) $ _ $ (_ $ dom_sum $ fp_abs) =
-    big_rec_def |> rep_thm |> #prop |> Logic.unvarify;
-
-val bnd_mono = 
-    prove_goalw_cterm [] 
-      (cterm_of sign (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs)))
-      (fn _ =>
-       [rtac (Collect_subset RS bnd_monoI) 1,
-        REPEAT (ares_tac (basic_monos @ Inductive.monos) 1)]);
-
-val dom_subset = standard (big_rec_def RS Fp.subs);
-
-val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
-
-(********)
-val _ = writeln "  Proving the introduction rules...";
-
-(*Mutual recursion?  Helps to derive subset rules for the individual sets.*)
-val Part_trans =
-    case rec_names of
-         [_] => asm_rl
-       | _   => standard (Part_subset RS subset_trans);
-
-(*To type-check recursive occurrences of the inductive sets, possibly
-  enclosed in some monotonic operator M.*)
-val rec_typechecks = 
-   [dom_subset] RL (asm_rl :: ([Part_trans] RL Inductive.monos)) RL [subsetD];
-
-(*Type-checking is hardest aspect of proof;
-  disjIn selects the correct disjunct after unfolding*)
-fun intro_tacsf disjIn prems = 
-  [(*insert prems and underlying sets*)
-   cut_facts_tac prems 1,
-   DETERM (stac unfold 1),
-   REPEAT (resolve_tac [Part_eqI,CollectI] 1),
-   (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
-   rtac disjIn 2,
-   (*Not ares_tac, since refl must be tried before any equality assumptions;
-     backtracking may occur if the premises have extra variables!*)
-   DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
-   (*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
-   rewrite_goals_tac Inductive.con_defs,
-   REPEAT (rtac refl 2),
-   (*Typechecking; this can fail*)
-   REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
-                      ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2::
-                                            Inductive.type_elims)
-                      ORELSE' hyp_subst_tac)),
-   DEPTH_SOLVE (swap_res_tac (SigmaI::subsetI::Inductive.type_intrs) 1)];
-
-(*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)
-val mk_disj_rls = 
-    let fun f rl = rl RS disjI1
-        and g rl = rl RS disjI2
-    in  accesses_bal(f, g, asm_rl)  end;
-
-val intrs = ListPair.map (uncurry (prove_goalw_cterm part_rec_defs))
-            (map (cterm_of sign) Inductive.intr_tms,
-             map intro_tacsf (mk_disj_rls(length Inductive.intr_tms)));
-
-(********)
-val _ = writeln "  Proving the elimination rule...";
-
-(*Breaks down logical connectives in the monotonic function*)
-val basic_elim_tac =
-    REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
-              ORELSE' bound_hyp_subst_tac))
-    THEN prune_params_tac
-        (*Mutual recursion: collapse references to Part(D,h)*)
-    THEN fold_tac part_rec_defs;
-
-in
-  struct
-  val thy = Inductive.thy
-  and defs = big_rec_def :: part_rec_defs
-  and bnd_mono   = bnd_mono
-  and dom_subset = dom_subset
-  and intrs      = intrs;
-
-  val elim = rule_by_tactic basic_elim_tac 
-                  (unfold RS Ind_Syntax.equals_CollectD);
-
-  (*Applies freeness of the given constructors, which *must* be unfolded by
-      the given defs.  Cannot simply use the local con_defs because  
-      con_defs=[] for inference systems. 
-    String s should have the form t:Si where Si is an inductive set*)
-  fun mk_cases defs s = 
-      rule_by_tactic (rewrite_goals_tac defs THEN 
-                      basic_elim_tac THEN
-                      fold_tac defs)
-         (assume_read Inductive.thy s  RS  elim)
-      |> standard;
-
-  val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
-  and rec_names = rec_names
-  end
-end;
-