src/HOL/NumberTheory/Quadratic_Reciprocity.thy
changeset 32747 8b9ced1051e2
parent 32746 2f1701a6d4e8
parent 32552 4d4ee06e9420
child 32748 887c68b70f7d
--- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Fri Sep 11 15:56:51 2009 +1000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,644 +0,0 @@
-(*  Title:      HOL/NumberTheory/Quadratic_Reciprocity.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {* The law of Quadratic reciprocity *}
-
-theory Quadratic_Reciprocity
-imports Gauss
-begin
-
-text {*
-  Lemmas leading up to the proof of theorem 3.3 in Niven and
-  Zuckerman's presentation.
-*}
-
-context GAUSS
-begin
-
-lemma QRLemma1: "a * setsum id A =
-  p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E"
-proof -
-  from finite_A have "a * setsum id A = setsum (%x. a * x) A"
-    by (auto simp add: setsum_const_mult id_def)
-  also have "setsum (%x. a * x) = setsum (%x. x * a)"
-    by (auto simp add: zmult_commute)
-  also have "setsum (%x. x * a) A = setsum id B"
-    by (simp add: B_def setsum_reindex_id[OF inj_on_xa_A])
-  also have "... = setsum (%x. p * (x div p) + StandardRes p x) B"
-    by (auto simp add: StandardRes_def zmod_zdiv_equality)
-  also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B"
-    by (rule setsum_addf)
-  also have "setsum (StandardRes p) B = setsum id C"
-    by (auto simp add: C_def setsum_reindex_id[OF SR_B_inj])
-  also from C_eq have "... = setsum id (D \<union> E)"
-    by auto
-  also from finite_D finite_E have "... = setsum id D + setsum id E"
-    by (rule setsum_Un_disjoint) (auto simp add: D_def E_def)
-  also have "setsum (%x. p * (x div p)) B =
-      setsum ((%x. p * (x div p)) o (%x. (x * a))) A"
-    by (auto simp add: B_def setsum_reindex inj_on_xa_A)
-  also have "... = setsum (%x. p * ((x * a) div p)) A"
-    by (auto simp add: o_def)
-  also from finite_A have "setsum (%x. p * ((x * a) div p)) A =
-    p * setsum (%x. ((x * a) div p)) A"
-    by (auto simp add: setsum_const_mult)
-  finally show ?thesis by arith
-qed
-
-lemma QRLemma2: "setsum id A = p * int (card E) - setsum id E +
-  setsum id D"
-proof -
-  from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)"
-    by (simp add: Un_commute)
-  also from F_D_disj finite_D finite_F
-  have "... = setsum id D + setsum id F"
-    by (auto simp add: Int_commute intro: setsum_Un_disjoint)
-  also from F_def have "F = (%x. (p - x)) ` E"
-    by auto
-  also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
-      setsum (%x. (p - x)) E"
-    by (auto simp add: setsum_reindex)
-  also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E"
-    by (auto simp add: setsum_subtractf id_def)
-  also from finite_E have "setsum (%x. p) E = p * int(card E)"
-    by (intro setsum_const)
-  finally show ?thesis
-    by arith
-qed
-
-lemma QRLemma3: "(a - 1) * setsum id A =
-    p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E"
-proof -
-  have "(a - 1) * setsum id A = a * setsum id A - setsum id A"
-    by (auto simp add: zdiff_zmult_distrib)
-  also note QRLemma1
-  also from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
-     setsum id E - setsum id A =
-      p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
-      setsum id E - (p * int (card E) - setsum id E + setsum id D)"
-    by auto
-  also have "... = p * (\<Sum>x \<in> A. x * a div p) -
-      p * int (card E) + 2 * setsum id E"
-    by arith
-  finally show ?thesis
-    by (auto simp only: zdiff_zmult_distrib2)
-qed
-
-lemma QRLemma4: "a \<in> zOdd ==>
-    (setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)"
-proof -
-  assume a_odd: "a \<in> zOdd"
-  from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
-      (a - 1) * setsum id A - 2 * setsum id E"
-    by arith
-  from a_odd have "a - 1 \<in> zEven"
-    by (rule odd_minus_one_even)
-  hence "(a - 1) * setsum id A \<in> zEven"
-    by (rule even_times_either)
-  moreover have "2 * setsum id E \<in> zEven"
-    by (auto simp add: zEven_def)
-  ultimately have "(a - 1) * setsum id A - 2 * setsum id E \<in> zEven"
-    by (rule even_minus_even)
-  with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by simp
-  hence "p \<in> zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by (rule EvenOdd.even_product)
-  with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by (auto simp add: odd_iff_not_even)
-  thus ?thesis
-    by (auto simp only: even_diff [symmetric])
-qed
-
-lemma QRLemma5: "a \<in> zOdd ==>
-   (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
-proof -
-  assume "a \<in> zOdd"
-  from QRLemma4 [OF this] have
-    "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \<in> zEven)" ..
-  moreover have "0 \<le> int(card E)"
-    by auto
-  moreover have "0 \<le> setsum (%x. ((x * a) div p)) A"
-    proof (intro setsum_nonneg)
-      show "\<forall>x \<in> A. 0 \<le> x * a div p"
-      proof
-        fix x
-        assume "x \<in> A"
-        then have "0 \<le> x"
-          by (auto simp add: A_def)
-        with a_nonzero have "0 \<le> x * a"
-          by (auto simp add: zero_le_mult_iff)
-        with p_g_2 show "0 \<le> x * a div p"
-          by (auto simp add: pos_imp_zdiv_nonneg_iff)
-      qed
-    qed
-  ultimately have "(-1::int)^nat((int (card E))) =
-      (-1)^nat(((\<Sum>x \<in> A. x * a div p)))"
-    by (intro neg_one_power_parity, auto)
-  also have "nat (int(card E)) = card E"
-    by auto
-  finally show ?thesis .
-qed
-
-end
-
-lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p)); zprime p; 2 < p;
-  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==>
-  (Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
-  apply (subst GAUSS.gauss_lemma)
-  apply (auto simp add: GAUSS_def)
-  apply (subst GAUSS.QRLemma5)
-  apply (auto simp add: GAUSS_def)
-  apply (simp add: GAUSS.A_def [OF GAUSS.intro] GAUSS_def)
-  done
-
-
-subsection {* Stuff about S, S1 and S2 *}
-
-locale QRTEMP =
-  fixes p     :: "int"
-  fixes q     :: "int"
-
-  assumes p_prime: "zprime p"
-  assumes p_g_2: "2 < p"
-  assumes q_prime: "zprime q"
-  assumes q_g_2: "2 < q"
-  assumes p_neq_q:      "p \<noteq> q"
-begin
-
-definition
-  P_set :: "int set" where
-  "P_set = {x. 0 < x & x \<le> ((p - 1) div 2) }"
-
-definition
-  Q_set :: "int set" where
-  "Q_set = {x. 0 < x & x \<le> ((q - 1) div 2) }"
-  
-definition
-  S :: "(int * int) set" where
-  "S = P_set <*> Q_set"
-
-definition
-  S1 :: "(int * int) set" where
-  "S1 = { (x, y). (x, y):S & ((p * y) < (q * x)) }"
-
-definition
-  S2 :: "(int * int) set" where
-  "S2 = { (x, y). (x, y):S & ((q * x) < (p * y)) }"
-
-definition
-  f1 :: "int => (int * int) set" where
-  "f1 j = { (j1, y). (j1, y):S & j1 = j & (y \<le> (q * j) div p) }"
-
-definition
-  f2 :: "int => (int * int) set" where
-  "f2 j = { (x, j1). (x, j1):S & j1 = j & (x \<le> (p * j) div q) }"
-
-lemma p_fact: "0 < (p - 1) div 2"
-proof -
-  from p_g_2 have "2 \<le> p - 1" by arith
-  then have "2 div 2 \<le> (p - 1) div 2" by (rule zdiv_mono1, auto)
-  then show ?thesis by auto
-qed
-
-lemma q_fact: "0 < (q - 1) div 2"
-proof -
-  from q_g_2 have "2 \<le> q - 1" by arith
-  then have "2 div 2 \<le> (q - 1) div 2" by (rule zdiv_mono1, auto)
-  then show ?thesis by auto
-qed
-
-lemma pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>
-    (p * b \<noteq> q * a)"
-proof
-  assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2"
-  then have "q dvd (p * b)" by (auto simp add: dvd_def)
-  with q_prime p_g_2 have "q dvd p | q dvd b"
-    by (auto simp add: zprime_zdvd_zmult)
-  moreover have "~ (q dvd p)"
-  proof
-    assume "q dvd p"
-    with p_prime have "q = 1 | q = p"
-      apply (auto simp add: zprime_def QRTEMP_def)
-      apply (drule_tac x = q and R = False in allE)
-      apply (simp add: QRTEMP_def)
-      apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)
-      apply (insert prems)
-      apply (auto simp add: QRTEMP_def)
-      done
-    with q_g_2 p_neq_q show False by auto
-  qed
-  ultimately have "q dvd b" by auto
-  then have "q \<le> b"
-  proof -
-    assume "q dvd b"
-    moreover from prems have "0 < b" by auto
-    ultimately show ?thesis using zdvd_bounds [of q b] by auto
-  qed
-  with prems have "q \<le> (q - 1) div 2" by auto
-  then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith
-  then have "2 * q \<le> q - 1"
-  proof -
-    assume "2 * q \<le> 2 * ((q - 1) div 2)"
-    with prems have "q \<in> zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)
-    with odd_minus_one_even have "(q - 1):zEven" by auto
-    with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto
-    with prems show ?thesis by auto
-  qed
-  then have p1: "q \<le> -1" by arith
-  with q_g_2 show False by auto
-qed
-
-lemma P_set_finite: "finite (P_set)"
-  using p_fact by (auto simp add: P_set_def bdd_int_set_l_le_finite)
-
-lemma Q_set_finite: "finite (Q_set)"
-  using q_fact by (auto simp add: Q_set_def bdd_int_set_l_le_finite)
-
-lemma S_finite: "finite S"
-  by (auto simp add: S_def  P_set_finite Q_set_finite finite_cartesian_product)
-
-lemma S1_finite: "finite S1"
-proof -
-  have "finite S" by (auto simp add: S_finite)
-  moreover have "S1 \<subseteq> S" by (auto simp add: S1_def S_def)
-  ultimately show ?thesis by (auto simp add: finite_subset)
-qed
-
-lemma S2_finite: "finite S2"
-proof -
-  have "finite S" by (auto simp add: S_finite)
-  moreover have "S2 \<subseteq> S" by (auto simp add: S2_def S_def)
-  ultimately show ?thesis by (auto simp add: finite_subset)
-qed
-
-lemma P_set_card: "(p - 1) div 2 = int (card (P_set))"
-  using p_fact by (auto simp add: P_set_def card_bdd_int_set_l_le)
-
-lemma Q_set_card: "(q - 1) div 2 = int (card (Q_set))"
-  using q_fact by (auto simp add: Q_set_def card_bdd_int_set_l_le)
-
-lemma S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
-  using P_set_card Q_set_card P_set_finite Q_set_finite
-  by (auto simp add: S_def zmult_int setsum_constant)
-
-lemma S1_Int_S2_prop: "S1 \<inter> S2 = {}"
-  by (auto simp add: S1_def S2_def)
-
-lemma S1_Union_S2_prop: "S = S1 \<union> S2"
-  apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
-proof -
-  fix a and b
-  assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2"
-  with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
-  moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
-  ultimately show "p * b < q * a" by auto
-qed
-
-lemma card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =
-    int(card(S1)) + int(card(S2))"
-proof -
-  have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
-    by (auto simp add: S_card)
-  also have "... = int( card(S1) + card(S2))"
-    apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
-    apply (drule card_Un_disjoint, auto)
-    done
-  also have "... = int(card(S1)) + int(card(S2))" by auto
-  finally show ?thesis .
-qed
-
-lemma aux1a: "[| 0 < a; a \<le> (p - 1) div 2;
-                             0 < b; b \<le> (q - 1) div 2 |] ==>
-                          (p * b < q * a) = (b \<le> q * a div p)"
-proof -
-  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
-  have "p * b < q * a ==> b \<le> q * a div p"
-  proof -
-    assume "p * b < q * a"
-    then have "p * b \<le> q * a" by auto
-    then have "(p * b) div p \<le> (q * a) div p"
-      by (rule zdiv_mono1) (insert p_g_2, auto)
-    then show "b \<le> (q * a) div p"
-      apply (subgoal_tac "p \<noteq> 0")
-      apply (frule div_mult_self1_is_id, force)
-      apply (insert p_g_2, auto)
-      done
-  qed
-  moreover have "b \<le> q * a div p ==> p * b < q * a"
-  proof -
-    assume "b \<le> q * a div p"
-    then have "p * b \<le> p * ((q * a) div p)"
-      using p_g_2 by (auto simp add: mult_le_cancel_left)
-    also have "... \<le> q * a"
-      by (rule zdiv_leq_prop) (insert p_g_2, auto)
-    finally have "p * b \<le> q * a" .
-    then have "p * b < q * a | p * b = q * a"
-      by (simp only: order_le_imp_less_or_eq)
-    moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa) (insert prems, auto)
-    ultimately show ?thesis by auto
-  qed
-  ultimately show ?thesis ..
-qed
-
-lemma aux1b: "[| 0 < a; a \<le> (p - 1) div 2;
-                             0 < b; b \<le> (q - 1) div 2 |] ==>
-                          (q * a < p * b) = (a \<le> p * b div q)"
-proof -
-  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
-  have "q * a < p * b ==> a \<le> p * b div q"
-  proof -
-    assume "q * a < p * b"
-    then have "q * a \<le> p * b" by auto
-    then have "(q * a) div q \<le> (p * b) div q"
-      by (rule zdiv_mono1) (insert q_g_2, auto)
-    then show "a \<le> (p * b) div q"
-      apply (subgoal_tac "q \<noteq> 0")
-      apply (frule div_mult_self1_is_id, force)
-      apply (insert q_g_2, auto)
-      done
-  qed
-  moreover have "a \<le> p * b div q ==> q * a < p * b"
-  proof -
-    assume "a \<le> p * b div q"
-    then have "q * a \<le> q * ((p * b) div q)"
-      using q_g_2 by (auto simp add: mult_le_cancel_left)
-    also have "... \<le> p * b"
-      by (rule zdiv_leq_prop) (insert q_g_2, auto)
-    finally have "q * a \<le> p * b" .
-    then have "q * a < p * b | q * a = p * b"
-      by (simp only: order_le_imp_less_or_eq)
-    moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa) (insert prems, auto)
-    ultimately show ?thesis by auto
-  qed
-  ultimately show ?thesis ..
-qed
-
-lemma (in -) aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==>
-             (q * ((p - 1) div 2)) div p \<le> (q - 1) div 2"
-proof-
-  assume "zprime p" and "zprime q" and "2 < p" and "2 < q"
-  (* Set up what's even and odd *)
-  then have "p \<in> zOdd & q \<in> zOdd"
-    by (auto simp add:  zprime_zOdd_eq_grt_2)
-  then have even1: "(p - 1):zEven & (q - 1):zEven"
-    by (auto simp add: odd_minus_one_even)
-  then have even2: "(2 * p):zEven & ((q - 1) * p):zEven"
-    by (auto simp add: zEven_def)
-  then have even3: "(((q - 1) * p) + (2 * p)):zEven"
-    by (auto simp: EvenOdd.even_plus_even)
-  (* using these prove it *)
-  from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)"
-    by (auto simp add: int_distrib)
-  then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2"
-    apply (rule_tac x = "((p - 1) * q)" in even_div_2_l)
-    by (auto simp add: even3, auto simp add: zmult_ac)
-  also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)"
-    by (auto simp add: even1 even_prod_div_2)
-  also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p"
-    by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
-  finally show ?thesis
-    apply (rule_tac x = " q * ((p - 1) div 2)" and
-                    y = "(q - 1) div 2" in div_prop2)
-    using prems by auto
-qed
-
-lemma aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p"
-proof
-  fix j
-  assume j_fact: "j \<in> P_set"
-  have "int (card (f1 j)) = int (card {y. y \<in> Q_set & y \<le> (q * j) div p})"
-  proof -
-    have "finite (f1 j)"
-    proof -
-      have "(f1 j) \<subseteq> S" by (auto simp add: f1_def)
-      with S_finite show ?thesis by (auto simp add: finite_subset)
-    qed
-    moreover have "inj_on (%(x,y). y) (f1 j)"
-      by (auto simp add: f1_def inj_on_def)
-    ultimately have "card ((%(x,y). y) ` (f1 j)) = card  (f1 j)"
-      by (auto simp add: f1_def card_image)
-    moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}"
-      using prems by (auto simp add: f1_def S_def Q_set_def P_set_def image_def)
-    ultimately show ?thesis by (auto simp add: f1_def)
-  qed
-  also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})"
-  proof -
-    have "{y. y \<in> Q_set & y \<le> (q * j) div p} =
-        {y. 0 < y & y \<le> (q * j) div p}"
-      apply (auto simp add: Q_set_def)
-    proof -
-      fix x
-      assume "0 < x" and "x \<le> q * j div p"
-      with j_fact P_set_def  have "j \<le> (p - 1) div 2" by auto
-      with q_g_2 have "q * j \<le> q * ((p - 1) div 2)"
-        by (auto simp add: mult_le_cancel_left)
-      with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p"
-        by (auto simp add: zdiv_mono1)
-      also from prems P_set_def have "... \<le> (q - 1) div 2"
-        apply simp
-        apply (insert aux2)
-        apply (simp add: QRTEMP_def)
-        done
-      finally show "x \<le> (q - 1) div 2" using prems by auto
-    qed
-    then show ?thesis by auto
-  qed
-  also have "... = (q * j) div p"
-  proof -
-    from j_fact P_set_def have "0 \<le> j" by auto
-    with q_g_2 have "q * 0 \<le> q * j" by (auto simp only: mult_left_mono)
-    then have "0 \<le> q * j" by auto
-    then have "0 div p \<le> (q * j) div p"
-      apply (rule_tac a = 0 in zdiv_mono1)
-      apply (insert p_g_2, auto)
-      done
-    also have "0 div p = 0" by auto
-    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
-  qed
-  finally show "int (card (f1 j)) = q * j div p" .
-qed
-
-lemma aux3b: "\<forall>j \<in> Q_set. int (card (f2 j)) = (p * j) div q"
-proof
-  fix j
-  assume j_fact: "j \<in> Q_set"
-  have "int (card (f2 j)) = int (card {y. y \<in> P_set & y \<le> (p * j) div q})"
-  proof -
-    have "finite (f2 j)"
-    proof -
-      have "(f2 j) \<subseteq> S" by (auto simp add: f2_def)
-      with S_finite show ?thesis by (auto simp add: finite_subset)
-    qed
-    moreover have "inj_on (%(x,y). x) (f2 j)"
-      by (auto simp add: f2_def inj_on_def)
-    ultimately have "card ((%(x,y). x) ` (f2 j)) = card  (f2 j)"
-      by (auto simp add: f2_def card_image)
-    moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}"
-      using prems by (auto simp add: f2_def S_def Q_set_def P_set_def image_def)
-    ultimately show ?thesis by (auto simp add: f2_def)
-  qed
-  also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})"
-  proof -
-    have "{y. y \<in> P_set & y \<le> (p * j) div q} =
-        {y. 0 < y & y \<le> (p * j) div q}"
-      apply (auto simp add: P_set_def)
-    proof -
-      fix x
-      assume "0 < x" and "x \<le> p * j div q"
-      with j_fact Q_set_def  have "j \<le> (q - 1) div 2" by auto
-      with p_g_2 have "p * j \<le> p * ((q - 1) div 2)"
-        by (auto simp add: mult_le_cancel_left)
-      with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q"
-        by (auto simp add: zdiv_mono1)
-      also from prems have "... \<le> (p - 1) div 2"
-        by (auto simp add: aux2 QRTEMP_def)
-      finally show "x \<le> (p - 1) div 2" using prems by auto
-      qed
-    then show ?thesis by auto
-  qed
-  also have "... = (p * j) div q"
-  proof -
-    from j_fact Q_set_def have "0 \<le> j" by auto
-    with p_g_2 have "p * 0 \<le> p * j" by (auto simp only: mult_left_mono)
-    then have "0 \<le> p * j" by auto
-    then have "0 div q \<le> (p * j) div q"
-      apply (rule_tac a = 0 in zdiv_mono1)
-      apply (insert q_g_2, auto)
-      done
-    also have "0 div q = 0" by auto
-    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
-  qed
-  finally show "int (card (f2 j)) = p * j div q" .
-qed
-
-lemma S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set"
-proof -
-  have "\<forall>x \<in> P_set. finite (f1 x)"
-  proof
-    fix x
-    have "f1 x \<subseteq> S" by (auto simp add: f1_def)
-    with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)
-  qed
-  moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})"
-    by (auto simp add: f1_def)
-  moreover note P_set_finite
-  ultimately have "int(card (UNION P_set f1)) =
-      setsum (%x. int(card (f1 x))) P_set"
-    by(simp add:card_UN_disjoint int_setsum o_def)
-  moreover have "S1 = UNION P_set f1"
-    by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
-  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"
-    by auto
-  also have "... = setsum (%j. q * j div p) P_set"
-    using aux3a by(fastsimp intro: setsum_cong)
-  finally show ?thesis .
-qed
-
-lemma S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set"
-proof -
-  have "\<forall>x \<in> Q_set. finite (f2 x)"
-  proof
-    fix x
-    have "f2 x \<subseteq> S" by (auto simp add: f2_def)
-    with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
-  qed
-  moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->
-      (f2 x) \<inter> (f2 y) = {})"
-    by (auto simp add: f2_def)
-  moreover note Q_set_finite
-  ultimately have "int(card (UNION Q_set f2)) =
-      setsum (%x. int(card (f2 x))) Q_set"
-    by(simp add:card_UN_disjoint int_setsum o_def)
-  moreover have "S2 = UNION Q_set f2"
-    by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
-  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"
-    by auto
-  also have "... = setsum (%j. p * j div q) Q_set"
-    using aux3b by(fastsimp intro: setsum_cong)
-  finally show ?thesis .
-qed
-
-lemma S1_carda: "int (card(S1)) =
-    setsum (%j. (j * q) div p) P_set"
-  by (auto simp add: S1_card zmult_ac)
-
-lemma S2_carda: "int (card(S2)) =
-    setsum (%j. (j * p) div q) Q_set"
-  by (auto simp add: S2_card zmult_ac)
-
-lemma pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +
-    (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)"
-proof -
-  have "(setsum (%j. (j * p) div q) Q_set) +
-      (setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)"
-    by (auto simp add: S1_carda S2_carda)
-  also have "... = int (card S1) + int (card S2)"
-    by auto
-  also have "... = ((p - 1) div 2) * ((q - 1) div 2)"
-    by (auto simp add: card_sum_S1_S2)
-  finally show ?thesis .
-qed
-
-
-lemma (in -) pq_prime_neq: "[| zprime p; zprime q; p \<noteq> q |] ==> (~[p = 0] (mod q))"
-  apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
-  apply (drule_tac x = q in allE)
-  apply (drule_tac x = p in allE)
-  apply auto
-  done
-
-
-lemma QR_short: "(Legendre p q) * (Legendre q p) =
-    (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
-proof -
-  from prems have "~([p = 0] (mod q))"
-    by (auto simp add: pq_prime_neq QRTEMP_def)
-  with prems Q_set_def have a1: "(Legendre p q) = (-1::int) ^
-      nat(setsum (%x. ((x * p) div q)) Q_set)"
-    apply (rule_tac p = q in  MainQRLemma)
-    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
-    done
-  from prems have "~([q = 0] (mod p))"
-    apply (rule_tac p = q and q = p in pq_prime_neq)
-    apply (simp add: QRTEMP_def)+
-    done
-  with prems P_set_def have a2: "(Legendre q p) =
-      (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
-    apply (rule_tac p = p in  MainQRLemma)
-    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
-    done
-  from a1 a2 have "(Legendre p q) * (Legendre q p) =
-      (-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
-        (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
-    by auto
-  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +
-                   nat(setsum (%x. ((x * q) div p)) P_set))"
-    by (auto simp add: zpower_zadd_distrib)
-  also have "nat(setsum (%x. ((x * p) div q)) Q_set) +
-      nat(setsum (%x. ((x * q) div p)) P_set) =
-        nat((setsum (%x. ((x * p) div q)) Q_set) +
-          (setsum (%x. ((x * q) div p)) P_set))"
-    apply (rule_tac z = "setsum (%x. ((x * p) div q)) Q_set" in
-      nat_add_distrib [symmetric])
-    apply (auto simp add: S1_carda [symmetric] S2_carda [symmetric])
-    done
-  also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))"
-    by (auto simp add: pq_sum_prop)
-  finally show ?thesis .
-qed
-
-end
-
-theorem Quadratic_Reciprocity:
-     "[| p \<in> zOdd; zprime p; q \<in> zOdd; zprime q;
-         p \<noteq> q |]
-      ==> (Legendre p q) * (Legendre q p) =
-          (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
-  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [symmetric]
-                     QRTEMP_def)
-
-end