src/HOL/Cardinals/Wellfounded_More_LFP.thy
changeset 54473 8bee5ca99e63
parent 54435 4a655e62ad34
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Cardinals/Wellfounded_More_LFP.thy	Mon Nov 18 18:04:44 2013 +0100
@@ -0,0 +1,194 @@
+(*  Title:      HOL/Cardinals/Wellfounded_More_LFP.thy
+    Author:     Andrei Popescu, TU Muenchen
+    Copyright   2012
+
+More on well-founded relations (LFP).
+*)
+
+header {* More on Well-Founded Relations (LFP) *}
+
+theory Wellfounded_More_LFP
+imports Order_Relation_More_LFP "~~/src/HOL/Library/Wfrec"
+begin
+
+
+text {* This section contains some variations of results in the theory
+@{text "Wellfounded.thy"}:
+\begin{itemize}
+\item means for slightly more direct definitions by well-founded recursion;
+\item variations of well-founded induction;
+\item means for proving a linear order to be a well-order.
+\end{itemize} *}
+
+
+subsection {* Well-founded recursion via genuine fixpoints *}
+
+
+(*2*)lemma wfrec_fixpoint:
+fixes r :: "('a * 'a) set" and
+      H :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+assumes WF: "wf r" and ADM: "adm_wf r H"
+shows "wfrec r H = H (wfrec r H)"
+proof(rule ext)
+  fix x
+  have "wfrec r H x = H (cut (wfrec r H) r x) x"
+  using wfrec[of r H] WF by simp
+  also
+  {have "\<And> y. (y,x) : r \<Longrightarrow> (cut (wfrec r H) r x) y = (wfrec r H) y"
+   by (auto simp add: cut_apply)
+   hence "H (cut (wfrec r H) r x) x = H (wfrec r H) x"
+   using ADM adm_wf_def[of r H] by auto
+  }
+  finally show "wfrec r H x = H (wfrec r H) x" .
+qed
+
+
+
+subsection {* Characterizations of well-founded-ness *}
+
+
+text {* A transitive relation is well-founded iff it is ``locally" well-founded,
+i.e., iff its restriction to the lower bounds of of any element is well-founded.  *}
+
+(*3*)lemma trans_wf_iff:
+assumes "trans r"
+shows "wf r = (\<forall>a. wf(r Int (r^-1``{a} \<times> r^-1``{a})))"
+proof-
+  obtain R where R_def: "R = (\<lambda> a. r Int (r^-1``{a} \<times> r^-1``{a}))" by blast
+  {assume *: "wf r"
+   {fix a
+    have "wf(R a)"
+    using * R_def wf_subset[of r "R a"] by auto
+   }
+  }
+  (*  *)
+  moreover
+  {assume *: "\<forall>a. wf(R a)"
+   have "wf r"
+   proof(unfold wf_def, clarify)
+     fix phi a
+     assume **: "\<forall>a. (\<forall>b. (b,a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a"
+     obtain chi where chi_def: "chi = (\<lambda>b. (b,a) \<in> r \<longrightarrow> phi b)" by blast
+     with * have "wf (R a)" by auto
+     hence "(\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)"
+     unfolding wf_def by blast
+     moreover
+     have "\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b"
+     proof(auto simp add: chi_def R_def)
+       fix b
+       assume 1: "(b,a) \<in> r" and 2: "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c"
+       hence "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c"
+       using assms trans_def[of r] by blast
+       thus "phi b" using ** by blast
+     qed
+     ultimately have  "\<forall>b. chi b" by (rule mp)
+     with ** chi_def show "phi a" by blast
+   qed
+  }
+  ultimately show ?thesis using R_def by blast
+qed
+
+
+text {* The next lemma is a variation of @{text "wf_eq_minimal"} from Wellfounded,
+allowing one to assume the set included in the field.  *}
+
+(*2*)lemma wf_eq_minimal2:
+"wf r = (\<forall>A. A <= Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r))"
+proof-
+  let ?phi = "\<lambda> A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r)"
+  have "wf r = (\<forall>A. ?phi A)"
+  by (auto simp: ex_in_conv [THEN sym], erule wfE_min, assumption, blast)
+     (rule wfI_min, metis)
+  (*  *)
+  also have "(\<forall>A. ?phi A) = (\<forall>B \<le> Field r. ?phi B)"
+  proof
+    assume "\<forall>A. ?phi A"
+    thus "\<forall>B \<le> Field r. ?phi B" by simp
+  next
+    assume *: "\<forall>B \<le> Field r. ?phi B"
+    show "\<forall>A. ?phi A"
+    proof(clarify)
+      fix A::"'a set" assume **: "A \<noteq> {}"
+      obtain B where B_def: "B = A Int (Field r)" by blast
+      show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r"
+      proof(cases "B = {}")
+        assume Case1: "B = {}"
+        obtain a where 1: "a \<in> A \<and> a \<notin> Field r"
+        using ** Case1 unfolding B_def by blast
+        hence "\<forall>a' \<in> A. (a',a) \<notin> r" using 1 unfolding Field_def by blast
+        thus ?thesis using 1 by blast
+      next
+        assume Case2: "B \<noteq> {}" have 1: "B \<le> Field r" unfolding B_def by blast
+        obtain a where 2: "a \<in> B \<and> (\<forall>a' \<in> B. (a',a) \<notin> r)"
+        using Case2 1 * by blast
+        have "\<forall>a' \<in> A. (a',a) \<notin> r"
+        proof(clarify)
+          fix a' assume "a' \<in> A" and **: "(a',a) \<in> r"
+          hence "a' \<in> B" unfolding B_def Field_def by blast
+          thus False using 2 ** by blast
+        qed
+        thus ?thesis using 2 unfolding B_def by blast
+      qed
+    qed
+  qed
+  finally show ?thesis by blast
+qed
+
+subsection {* Characterizations of well-founded-ness *}
+
+text {* The next lemma and its corollary enable one to prove that
+a linear order is a well-order in a way which is more standard than
+via well-founded-ness of the strict version of the relation.  *}
+
+(*3*)
+lemma Linear_order_wf_diff_Id:
+assumes LI: "Linear_order r"
+shows "wf(r - Id) = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
+proof(cases "r \<le> Id")
+  assume Case1: "r \<le> Id"
+  hence temp: "r - Id = {}" by blast
+  hence "wf(r - Id)" by (simp add: temp)
+  moreover
+  {fix A assume *: "A \<le> Field r" and **: "A \<noteq> {}"
+   obtain a where 1: "r = {} \<or> r = {(a,a)}" using LI
+   unfolding order_on_defs using Case1 rel.Total_subset_Id by metis
+   hence "A = {a} \<and> r = {(a,a)}" using * ** unfolding Field_def by blast
+   hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" using 1 by blast
+  }
+  ultimately show ?thesis by blast
+next
+  assume Case2: "\<not> r \<le> Id"
+  hence 1: "Field r = Field(r - Id)" using Total_Id_Field LI
+  unfolding order_on_defs by blast
+  show ?thesis
+  proof
+    assume *: "wf(r - Id)"
+    show "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
+    proof(clarify)
+      fix A assume **: "A \<le> Field r" and ***: "A \<noteq> {}"
+      hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
+      using 1 * unfolding wf_eq_minimal2 by simp
+      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
+      using rel.Linear_order_in_diff_Id[of r] ** LI by blast
+      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" by blast
+    qed
+  next
+    assume *: "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
+    show "wf(r - Id)"
+    proof(unfold wf_eq_minimal2, clarify)
+      fix A assume **: "A \<le> Field(r - Id)" and ***: "A \<noteq> {}"
+      hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r"
+      using 1 * by simp
+      moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
+      using rel.Linear_order_in_diff_Id[of r] ** LI mono_Field[of "r - Id" r] by blast
+      ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" by blast
+    qed
+  qed
+qed
+
+(*3*)corollary Linear_order_Well_order_iff:
+assumes "Linear_order r"
+shows "Well_order r = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
+using assms unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast
+
+end