src/HOL/Library/Diagonal_Subsequence.thy
changeset 52681 8cc7f76b827a
parent 51526 155263089e7b
child 57862 8f074e6e22fc
--- a/src/HOL/Library/Diagonal_Subsequence.thy	Tue Jul 16 23:34:33 2013 +0200
+++ b/src/HOL/Library/Diagonal_Subsequence.thy	Wed Jul 17 13:34:21 2013 +0200
@@ -11,66 +11,61 @@
   assumes ex_subseq: "\<And>n s. subseq s \<Longrightarrow> \<exists>r'. subseq r' \<and> P n (s o r')"
 begin
 
+definition reduce where "reduce s n = (SOME r'. subseq r' \<and> P n (s o r'))"
+
+lemma subseq_reduce[intro, simp]:
+  "subseq s \<Longrightarrow> subseq (reduce s n)"
+  unfolding reduce_def by (rule someI2_ex[OF ex_subseq]) auto
+
+lemma reduce_holds:
+  "subseq s \<Longrightarrow> P n (s o reduce s n)"
+  unfolding reduce_def by (rule someI2_ex[OF ex_subseq]) (auto simp: o_def)
+
 primrec seqseq where
   "seqseq 0 = id"
-| "seqseq (Suc n) = seqseq n o (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
+| "seqseq (Suc n) = seqseq n o reduce (seqseq n) n"
 
-lemma seqseq_ex:
-  shows "subseq (seqseq n) \<and>
-  (\<exists>r'. seqseq (Suc n) = seqseq n o r' \<and> subseq r' \<and> P n (seqseq n o r'))"
+lemma subseq_seqseq[intro, simp]: "subseq (seqseq n)"
 proof (induct n)
-  case 0
-  let ?P = "\<lambda>r'. subseq r' \<and> P 0 r'"
-  let ?r = "Eps ?P"
-  have "?P ?r" using ex_subseq[of id 0] by (intro someI_ex[of ?P]) (auto simp: subseq_def)
-  thus ?case by (auto simp: subseq_def)
-next
-  case (Suc n)
-  then obtain r' where
-    Suc': "seqseq (Suc n) = seqseq n \<circ> r'" "subseq (seqseq n)" "subseq r'"
-      "P n (seqseq n o r')"
-    by blast
-  let ?P = "\<lambda>r'a. subseq (r'a ) \<and> P (Suc n) (seqseq n o r' o r'a)"
-  let ?r = "Eps ?P"
-  have "?P ?r" using ex_subseq[of "seqseq n o r'" "Suc n"] Suc'
-    by (intro someI_ex[of ?P]) (auto intro: subseq_o simp: o_assoc)
-  moreover have "seqseq (Suc (Suc n)) = seqseq n \<circ> r' \<circ> ?r"
-    by (subst seqseq.simps) (simp only: Suc' o_assoc)
-  moreover note subseq_o[OF `subseq (seqseq n)` `subseq r'`]
-  ultimately show ?case unfolding Suc' by (auto simp: o_def)
+  case (Suc n) thus ?case by (subst seqseq.simps) (auto simp: subseq_reduce intro!: subseq_o)
+qed (simp add: subseq_def)
+
+lemma seqseq_holds:
+  "P n (seqseq (Suc n))"
+proof -
+  have "P n (seqseq n o reduce (seqseq n) n)"
+    by (intro reduce_holds subseq_seqseq)
+  thus ?thesis by simp
 qed
 
-lemma subseq_seqseq:
-  shows "subseq (seqseq n)" using seqseq_ex[OF assms] by auto
-
-definition reducer where "reducer n = (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
-
-lemma subseq_reducer: "subseq (reducer n)" and reducer_reduces: "P n (seqseq n o reducer n)"
-  unfolding atomize_conj unfolding reducer_def using subseq_seqseq
-  by (rule someI_ex[OF ex_subseq])
-
-lemma seqseq_reducer[simp]:
-  "seqseq (Suc n) = seqseq n o reducer n"
-  by (simp add: reducer_def)
-
-declare seqseq.simps(2)[simp del]
-
 definition diagseq where "diagseq i = seqseq i i"
 
+lemma subseq_mono: "subseq f \<Longrightarrow> a \<le> b \<Longrightarrow> f a \<le> f b"
+  by (metis le_eq_less_or_eq subseq_mono)
+
+lemma subseq_strict_mono: "subseq f \<Longrightarrow> a < b \<Longrightarrow> f a < f b"
+  by (simp add: subseq_def)
+
 lemma diagseq_mono: "diagseq n < diagseq (Suc n)"
-  unfolding diagseq_def seqseq_reducer o_def
-  by (metis subseq_mono[OF subseq_seqseq] less_le_trans lessI seq_suble subseq_reducer)
+proof -
+  have "diagseq n < seqseq n (Suc n)"
+    using subseq_seqseq[of n] by (simp add: diagseq_def subseq_def)
+  also have "\<dots> \<le> seqseq n (reduce (seqseq n) n (Suc n))"
+    by (auto intro: subseq_mono seq_suble)
+  also have "\<dots> = diagseq (Suc n)" by (simp add: diagseq_def)
+  finally show ?thesis .
+qed
 
 lemma subseq_diagseq: "subseq diagseq"
   using diagseq_mono by (simp add: subseq_Suc_iff diagseq_def)
 
 primrec fold_reduce where
   "fold_reduce n 0 = id"
-| "fold_reduce n (Suc k) = fold_reduce n k o reducer (n + k)"
+| "fold_reduce n (Suc k) = fold_reduce n k o reduce (seqseq (n + k)) (n + k)"
 
-lemma subseq_fold_reduce: "subseq (fold_reduce n k)"
+lemma subseq_fold_reduce[intro, simp]: "subseq (fold_reduce n k)"
 proof (induct k)
-  case (Suc k) from subseq_o[OF this subseq_reducer] show ?case by (simp add: o_def)
+  case (Suc k) from subseq_o[OF this subseq_reduce] show ?case by (simp add: o_def)
 qed (simp add: subseq_def)
 
 lemma ex_subseq_reduce_index: "seqseq (n + k) = seqseq n o fold_reduce n k"
@@ -100,12 +95,23 @@
 
 lemma subseq_diagonal_rest: "subseq (\<lambda>x. fold_reduce k x (k + x))"
   unfolding subseq_Suc_iff fold_reduce.simps o_def
-  by (metis subseq_mono[OF subseq_fold_reduce] less_le_trans lessI add_Suc_right seq_suble
-      subseq_reducer)
+proof
+  fix n
+  have "fold_reduce k n (k + n) < fold_reduce k n (k + Suc n)" (is "?lhs < _")
+    by (auto intro: subseq_strict_mono)
+  also have "\<dots> \<le> fold_reduce k n (reduce (seqseq (k + n)) (k + n) (k + Suc n))"
+    by (rule subseq_mono) (auto intro!: seq_suble subseq_mono)
+  finally show "?lhs < \<dots>" .
+qed
 
 lemma diagseq_seqseq: "diagseq o (op + k) = (seqseq k o (\<lambda>x. fold_reduce k x (k + x)))"
   by (auto simp: o_def diagseq_add)
 
+lemma diagseq_holds:
+  assumes subseq_stable: "\<And>r s n. subseq r \<Longrightarrow> P n s \<Longrightarrow> P n (s o r)"
+  shows "P k (diagseq o (op + (Suc k)))"
+  unfolding diagseq_seqseq by (intro subseq_stable subseq_diagonal_rest seqseq_holds)
+
 end
 
 end