--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Rules/Blast.thy Mon Oct 23 16:25:04 2000 +0200
@@ -0,0 +1,40 @@
+theory Blast = Main:
+
+lemma "((\<exists>x. \<forall>y. p(x)=p(y)) = ((\<exists>x. q(x))=(\<forall>y. p(y)))) =
+ ((\<exists>x. \<forall>y. q(x)=q(y)) = ((\<exists>x. p(x))=(\<forall>y. q(y))))"
+apply blast
+done
+
+text{*\noindent Until now, we have proved everything using only induction and
+simplification. Substantial proofs require more elaborate types of
+inference.*}
+
+lemma "(\<forall>x. honest(x) \<and> industrious(x) \<longrightarrow> healthy(x)) \<and>
+ \<not> (\<exists>x. grocer(x) \<and> healthy(x)) \<and>
+ (\<forall>x. industrious(x) \<and> grocer(x) \<longrightarrow> honest(x)) \<and>
+ (\<forall>x. cyclist(x) \<longrightarrow> industrious(x)) \<and>
+ (\<forall>x. \<not>healthy(x) \<and> cyclist(x) \<longrightarrow> \<not>honest(x))
+ \<longrightarrow> (\<forall>x. grocer(x) \<longrightarrow> \<not>cyclist(x))";
+apply blast
+done
+
+lemma "(\<Union>i\<in>I. A(i)) \<inter> (\<Union>j\<in>J. B(j)) =
+ (\<Union>i\<in>I. \<Union>j\<in>J. A(i) \<inter> B(j))"
+apply blast
+done
+
+text {*
+@{thm[display] mult_is_0}
+ \rulename{mult_is_0}}
+
+@{thm[display] finite_Un}
+ \rulename{finite_Un}}
+*};
+
+
+lemma [iff]: "(xs@ys = []) = (xs=[] & ys=[])"
+ apply (induct_tac xs)
+ by (simp_all);
+
+(*ideas for uses of intro, etc.: ex/Primes/is_gcd_unique?*)
+end