src/HOL/Isar_Examples/Mutilated_Checkerboard.thy
changeset 33026 8f35633c4922
parent 32960 69916a850301
child 35416 d8d7d1b785af
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy	Tue Oct 20 19:37:09 2009 +0200
@@ -0,0 +1,300 @@
+(*  Title:      HOL/Isar_Examples/Mutilated_Checkerboard.thy
+    Author:     Markus Wenzel, TU Muenchen (Isar document)
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory (original scripts)
+*)
+
+header {* The Mutilated Checker Board Problem *}
+
+theory Mutilated_Checkerboard
+imports Main
+begin
+
+text {*
+ The Mutilated Checker Board Problem, formalized inductively.  See
+ \cite{paulson-mutilated-board} and
+ \url{http://isabelle.in.tum.de/library/HOL/Induct/Mutil.html} for the
+ original tactic script version.
+*}
+
+subsection {* Tilings *}
+
+inductive_set
+  tiling :: "'a set set => 'a set set"
+  for A :: "'a set set"
+  where
+    empty: "{} : tiling A"
+  | Un: "a : A ==> t : tiling A ==> a <= - t ==> a Un t : tiling A"
+
+
+text "The union of two disjoint tilings is a tiling."
+
+lemma tiling_Un:
+  assumes "t : tiling A" and "u : tiling A" and "t Int u = {}"
+  shows "t Un u : tiling A"
+proof -
+  let ?T = "tiling A"
+  from `t : ?T` and `t Int u = {}`
+  show "t Un u : ?T"
+  proof (induct t)
+    case empty
+    with `u : ?T` show "{} Un u : ?T" by simp
+  next
+    case (Un a t)
+    show "(a Un t) Un u : ?T"
+    proof -
+      have "a Un (t Un u) : ?T"
+        using `a : A`
+      proof (rule tiling.Un)
+        from `(a Un t) Int u = {}` have "t Int u = {}" by blast
+        then show "t Un u: ?T" by (rule Un)
+        from `a <= - t` and `(a Un t) Int u = {}`
+        show "a <= - (t Un u)" by blast
+      qed
+      also have "a Un (t Un u) = (a Un t) Un u"
+        by (simp only: Un_assoc)
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+
+subsection {* Basic properties of ``below'' *}
+
+constdefs
+  below :: "nat => nat set"
+  "below n == {i. i < n}"
+
+lemma below_less_iff [iff]: "(i: below k) = (i < k)"
+  by (simp add: below_def)
+
+lemma below_0: "below 0 = {}"
+  by (simp add: below_def)
+
+lemma Sigma_Suc1:
+    "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"
+  by (simp add: below_def less_Suc_eq) blast
+
+lemma Sigma_Suc2:
+    "m = n + 2 ==> A <*> below m =
+      (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"
+  by (auto simp add: below_def)
+
+lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2
+
+
+subsection {* Basic properties of ``evnodd'' *}
+
+constdefs
+  evnodd :: "(nat * nat) set => nat => (nat * nat) set"
+  "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"
+
+lemma evnodd_iff:
+    "(i, j): evnodd A b = ((i, j): A  & (i + j) mod 2 = b)"
+  by (simp add: evnodd_def)
+
+lemma evnodd_subset: "evnodd A b <= A"
+  by (unfold evnodd_def, rule Int_lower1)
+
+lemma evnoddD: "x : evnodd A b ==> x : A"
+  by (rule subsetD, rule evnodd_subset)
+
+lemma evnodd_finite: "finite A ==> finite (evnodd A b)"
+  by (rule finite_subset, rule evnodd_subset)
+
+lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b"
+  by (unfold evnodd_def) blast
+
+lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b"
+  by (unfold evnodd_def) blast
+
+lemma evnodd_empty: "evnodd {} b = {}"
+  by (simp add: evnodd_def)
+
+lemma evnodd_insert: "evnodd (insert (i, j) C) b =
+    (if (i + j) mod 2 = b
+      then insert (i, j) (evnodd C b) else evnodd C b)"
+  by (simp add: evnodd_def)
+
+
+subsection {* Dominoes *}
+
+inductive_set
+  domino :: "(nat * nat) set set"
+  where
+    horiz: "{(i, j), (i, j + 1)} : domino"
+  | vertl: "{(i, j), (i + 1, j)} : domino"
+
+lemma dominoes_tile_row:
+  "{i} <*> below (2 * n) : tiling domino"
+  (is "?B n : ?T")
+proof (induct n)
+  case 0
+  show ?case by (simp add: below_0 tiling.empty)
+next
+  case (Suc n)
+  let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"
+  have "?B (Suc n) = ?a Un ?B n"
+    by (auto simp add: Sigma_Suc Un_assoc)
+  moreover have "... : ?T"
+  proof (rule tiling.Un)
+    have "{(i, 2 * n), (i, 2 * n + 1)} : domino"
+      by (rule domino.horiz)
+    also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast
+    finally show "... : domino" .
+    show "?B n : ?T" by (rule Suc)
+    show "?a <= - ?B n" by blast
+  qed
+  ultimately show ?case by simp
+qed
+
+lemma dominoes_tile_matrix:
+  "below m <*> below (2 * n) : tiling domino"
+  (is "?B m : ?T")
+proof (induct m)
+  case 0
+  show ?case by (simp add: below_0 tiling.empty)
+next
+  case (Suc m)
+  let ?t = "{m} <*> below (2 * n)"
+  have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
+  moreover have "... : ?T"
+  proof (rule tiling_Un)
+    show "?t : ?T" by (rule dominoes_tile_row)
+    show "?B m : ?T" by (rule Suc)
+    show "?t Int ?B m = {}" by blast
+  qed
+  ultimately show ?case by simp
+qed
+
+lemma domino_singleton:
+  assumes d: "d : domino" and "b < 2"
+  shows "EX i j. evnodd d b = {(i, j)}"  (is "?P d")
+  using d
+proof induct
+  from `b < 2` have b_cases: "b = 0 | b = 1" by arith
+  fix i j
+  note [simp] = evnodd_empty evnodd_insert mod_Suc
+  from b_cases show "?P {(i, j), (i, j + 1)}" by rule auto
+  from b_cases show "?P {(i, j), (i + 1, j)}" by rule auto
+qed
+
+lemma domino_finite:
+  assumes d: "d: domino"
+  shows "finite d"
+  using d
+proof induct
+  fix i j :: nat
+  show "finite {(i, j), (i, j + 1)}" by (intro finite.intros)
+  show "finite {(i, j), (i + 1, j)}" by (intro finite.intros)
+qed
+
+
+subsection {* Tilings of dominoes *}
+
+lemma tiling_domino_finite:
+  assumes t: "t : tiling domino"  (is "t : ?T")
+  shows "finite t"  (is "?F t")
+  using t
+proof induct
+  show "?F {}" by (rule finite.emptyI)
+  fix a t assume "?F t"
+  assume "a : domino" then have "?F a" by (rule domino_finite)
+  from this and `?F t` show "?F (a Un t)" by (rule finite_UnI)
+qed
+
+lemma tiling_domino_01:
+  assumes t: "t : tiling domino"  (is "t : ?T")
+  shows "card (evnodd t 0) = card (evnodd t 1)"
+  using t
+proof induct
+  case empty
+  show ?case by (simp add: evnodd_def)
+next
+  case (Un a t)
+  let ?e = evnodd
+  note hyp = `card (?e t 0) = card (?e t 1)`
+    and at = `a <= - t`
+  have card_suc:
+    "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"
+  proof -
+    fix b :: nat assume "b < 2"
+    have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)
+    also obtain i j where e: "?e a b = {(i, j)}"
+    proof -
+      from `a \<in> domino` and `b < 2`
+      have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
+      then show ?thesis by (blast intro: that)
+    qed
+    moreover have "... Un ?e t b = insert (i, j) (?e t b)" by simp
+    moreover have "card ... = Suc (card (?e t b))"
+    proof (rule card_insert_disjoint)
+      from `t \<in> tiling domino` have "finite t"
+        by (rule tiling_domino_finite)
+      then show "finite (?e t b)"
+        by (rule evnodd_finite)
+      from e have "(i, j) : ?e a b" by simp
+      with at show "(i, j) ~: ?e t b" by (blast dest: evnoddD)
+    qed
+    ultimately show "?thesis b" by simp
+  qed
+  then have "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp
+  also from hyp have "card (?e t 0) = card (?e t 1)" .
+  also from card_suc have "Suc ... = card (?e (a Un t) 1)"
+    by simp
+  finally show ?case .
+qed
+
+
+subsection {* Main theorem *}
+
+constdefs
+  mutilated_board :: "nat => nat => (nat * nat) set"
+  "mutilated_board m n ==
+    below (2 * (m + 1)) <*> below (2 * (n + 1))
+      - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"
+
+theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"
+proof (unfold mutilated_board_def)
+  let ?T = "tiling domino"
+  let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))"
+  let ?t' = "?t - {(0, 0)}"
+  let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}"
+
+  show "?t'' ~: ?T"
+  proof
+    have t: "?t : ?T" by (rule dominoes_tile_matrix)
+    assume t'': "?t'' : ?T"
+
+    let ?e = evnodd
+    have fin: "finite (?e ?t 0)"
+      by (rule evnodd_finite, rule tiling_domino_finite, rule t)
+
+    note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff
+    have "card (?e ?t'' 0) < card (?e ?t' 0)"
+    proof -
+      have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)})
+        < card (?e ?t' 0)"
+      proof (rule card_Diff1_less)
+        from _ fin show "finite (?e ?t' 0)"
+          by (rule finite_subset) auto
+        show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0" by simp
+      qed
+      then show ?thesis by simp
+    qed
+    also have "... < card (?e ?t 0)"
+    proof -
+      have "(0, 0) : ?e ?t 0" by simp
+      with fin have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)"
+        by (rule card_Diff1_less)
+      then show ?thesis by simp
+    qed
+    also from t have "... = card (?e ?t 1)"
+      by (rule tiling_domino_01)
+    also have "?e ?t 1 = ?e ?t'' 1" by simp
+    also from t'' have "card ... = card (?e ?t'' 0)"
+      by (rule tiling_domino_01 [symmetric])
+    finally have "... < ..." . then show False ..
+  qed
+qed
+
+end