--- a/src/ZF/Constructible/Reflection.thy Fri Apr 23 23:33:48 2010 +0200
+++ b/src/ZF/Constructible/Reflection.thy Fri Apr 23 23:35:43 2010 +0200
@@ -268,7 +268,7 @@
text{*Example 1: reflecting a simple formula. The reflecting class is first
given as the variable @{text ?Cl} and later retrieved from the final
proof state.*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & x \<in> y,
\<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
@@ -285,7 +285,7 @@
text{*Example 2*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)"
@@ -302,14 +302,14 @@
by fast
text{*Example 2''. We expand the subset relation.*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> (\<forall>w. M(w) --> w\<in>z --> w\<in>x) --> z\<in>y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z --> w\<in>x) --> z\<in>y)"
by fast
text{*Example 2'''. Single-step version, to reveal the reflecting class.*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)"
@@ -329,21 +329,21 @@
text{*Example 3. Warning: the following examples make sense only
if @{term P} is quantifier-free, since it is not being relativized.*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<in> y <-> z \<in> x & P(z)),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y <-> z \<in> x & P(z))"
by fast
text{*Example 3'*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & y = Collect(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))";
by fast
text{*Example 3''*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>x. \<exists>y. M(y) & y = Replace(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))";
@@ -351,7 +351,7 @@
text{*Example 4: Axiom of Choice. Possibly wrong, since @{text \<Pi>} needs
to be relativized.*}
-lemma (in reflection)
+schematic_lemma (in reflection)
"Reflects(?Cl,
\<lambda>A. 0\<notin>A --> (\<exists>f. M(f) & f \<in> (\<Pi> X \<in> A. X)),
\<lambda>a A. 0\<notin>A --> (\<exists>f\<in>Mset(a). f \<in> (\<Pi> X \<in> A. X)))"