--- a/src/HOL/ex/Commutative_Ring_Complete.thy Fri Oct 30 01:32:06 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,391 +0,0 @@
-(* Author: Bernhard Haeupler
-
-This theory is about of the relative completeness of method comm-ring
-method. As long as the reified atomic polynomials of type 'a pol are
-in normal form, the cring method is complete.
-*)
-
-header {* Proof of the relative completeness of method comm-ring *}
-
-theory Commutative_Ring_Complete
-imports Commutative_Ring
-begin
-
-text {* Formalization of normal form *}
-fun
- isnorm :: "('a::{comm_ring}) pol \<Rightarrow> bool"
-where
- "isnorm (Pc c) \<longleftrightarrow> True"
- | "isnorm (Pinj i (Pc c)) \<longleftrightarrow> False"
- | "isnorm (Pinj i (Pinj j Q)) \<longleftrightarrow> False"
- | "isnorm (Pinj 0 P) \<longleftrightarrow> False"
- | "isnorm (Pinj i (PX Q1 j Q2)) \<longleftrightarrow> isnorm (PX Q1 j Q2)"
- | "isnorm (PX P 0 Q) \<longleftrightarrow> False"
- | "isnorm (PX (Pc c) i Q) \<longleftrightarrow> c \<noteq> 0 \<and> isnorm Q"
- | "isnorm (PX (PX P1 j (Pc c)) i Q) \<longleftrightarrow> c \<noteq> 0 \<and> isnorm (PX P1 j (Pc c)) \<and> isnorm Q"
- | "isnorm (PX P i Q) \<longleftrightarrow> isnorm P \<and> isnorm Q"
-
-(* Some helpful lemmas *)
-lemma norm_Pinj_0_False:"isnorm (Pinj 0 P) = False"
-by(cases P, auto)
-
-lemma norm_PX_0_False:"isnorm (PX (Pc 0) i Q) = False"
-by(cases i, auto)
-
-lemma norm_Pinj:"isnorm (Pinj i Q) \<Longrightarrow> isnorm Q"
-by(cases i,simp add: norm_Pinj_0_False norm_PX_0_False,cases Q) auto
-
-lemma norm_PX2:"isnorm (PX P i Q) \<Longrightarrow> isnorm Q"
-by(cases i, auto, cases P, auto, case_tac pol2, auto)
-
-lemma norm_PX1:"isnorm (PX P i Q) \<Longrightarrow> isnorm P"
-by(cases i, auto, cases P, auto, case_tac pol2, auto)
-
-lemma mkPinj_cn:"\<lbrakk>y~=0; isnorm Q\<rbrakk> \<Longrightarrow> isnorm (mkPinj y Q)"
-apply(auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split)
-apply(case_tac nat, auto simp add: norm_Pinj_0_False)
-by(case_tac pol, auto) (case_tac y, auto)
-
-lemma norm_PXtrans:
- assumes A:"isnorm (PX P x Q)" and "isnorm Q2"
- shows "isnorm (PX P x Q2)"
-proof(cases P)
- case (PX p1 y p2) from prems show ?thesis by(cases x, auto, cases p2, auto)
-next
- case Pc from prems show ?thesis by(cases x, auto)
-next
- case Pinj from prems show ?thesis by(cases x, auto)
-qed
-
-lemma norm_PXtrans2: assumes A:"isnorm (PX P x Q)" and "isnorm Q2" shows "isnorm (PX P (Suc (n+x)) Q2)"
-proof(cases P)
- case (PX p1 y p2)
- from prems show ?thesis by(cases x, auto, cases p2, auto)
-next
- case Pc
- from prems show ?thesis by(cases x, auto)
-next
- case Pinj
- from prems show ?thesis by(cases x, auto)
-qed
-
-text {* mkPX conserves normalizedness (@{text "_cn"}) *}
-lemma mkPX_cn:
- assumes "x \<noteq> 0" and "isnorm P" and "isnorm Q"
- shows "isnorm (mkPX P x Q)"
-proof(cases P)
- case (Pc c)
- from prems show ?thesis by (cases x) (auto simp add: mkPinj_cn mkPX_def)
-next
- case (Pinj i Q)
- from prems show ?thesis by (cases x) (auto simp add: mkPinj_cn mkPX_def)
-next
- case (PX P1 y P2)
- from prems have Y0:"y>0" by(cases y, auto)
- from prems have "isnorm P1" "isnorm P2" by (auto simp add: norm_PX1[of P1 y P2] norm_PX2[of P1 y P2])
- with prems Y0 show ?thesis by (cases x, auto simp add: mkPX_def norm_PXtrans2[of P1 y _ Q _], cases P2, auto)
-qed
-
-text {* add conserves normalizedness *}
-lemma add_cn:"isnorm P \<Longrightarrow> isnorm Q \<Longrightarrow> isnorm (P \<oplus> Q)"
-proof(induct P Q rule: add.induct)
- case (2 c i P2) thus ?case by (cases P2, simp_all, cases i, simp_all)
-next
- case (3 i P2 c) thus ?case by (cases P2, simp_all, cases i, simp_all)
-next
- case (4 c P2 i Q2)
- from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
- with prems show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto)
-next
- case (5 P2 i Q2 c)
- from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
- with prems show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto)
-next
- case (6 x P2 y Q2)
- from prems have Y0:"y>0" by (cases y, auto simp add: norm_Pinj_0_False)
- from prems have X0:"x>0" by (cases x, auto simp add: norm_Pinj_0_False)
- have "x < y \<or> x = y \<or> x > y" by arith
- moreover
- { assume "x<y" hence "EX d. y=d+x" by arith
- then obtain d where "y=d+x"..
- moreover
- note prems X0
- moreover
- from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- with prems have "isnorm (Pinj d Q2)" by (cases d, simp, cases Q2, auto)
- ultimately have ?case by (simp add: mkPinj_cn)}
- moreover
- { assume "x=y"
- moreover
- from prems have "isnorm P2" "isnorm Q2" by(auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- note prems Y0
- moreover
- ultimately have ?case by (simp add: mkPinj_cn) }
- moreover
- { assume "x>y" hence "EX d. x=d+y" by arith
- then obtain d where "x=d+y"..
- moreover
- note prems Y0
- moreover
- from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- with prems have "isnorm (Pinj d P2)" by (cases d, simp, cases P2, auto)
- ultimately have ?case by (simp add: mkPinj_cn)}
- ultimately show ?case by blast
-next
- case (7 x P2 Q2 y R)
- have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
- moreover
- { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
- moreover
- { assume "x=1"
- from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (R \<oplus> P2)" by simp
- with prems have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
- moreover
- { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
- then obtain d where X:"x=Suc (Suc d)" ..
- from prems have NR:"isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
- with prems NR have "isnorm (R \<oplus> Pinj (x - 1) P2)" "isnorm (PX Q2 y R)" by simp fact
- with X have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
- ultimately show ?case by blast
-next
- case (8 Q2 y R x P2)
- have "x = 0 \<or> x = 1 \<or> x > 1" by arith
- moreover
- { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
- moreover
- { assume "x=1"
- from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (R \<oplus> P2)" by simp
- with prems have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
- moreover
- { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
- then obtain d where X:"x=Suc (Suc d)" ..
- from prems have NR:"isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
- with prems NR have "isnorm (R \<oplus> Pinj (x - 1) P2)" "isnorm (PX Q2 y R)" by simp fact
- with X have ?case by (simp add: norm_PXtrans[of Q2 y _]) }
- ultimately show ?case by blast
-next
- case (9 P1 x P2 Q1 y Q2)
- from prems have Y0:"y>0" by(cases y, auto)
- from prems have X0:"x>0" by(cases x, auto)
- from prems have NP1:"isnorm P1" and NP2:"isnorm P2" by (auto simp add: norm_PX1[of P1 _ P2] norm_PX2[of P1 _ P2])
- from prems have NQ1:"isnorm Q1" and NQ2:"isnorm Q2" by (auto simp add: norm_PX1[of Q1 _ Q2] norm_PX2[of Q1 _ Q2])
- have "y < x \<or> x = y \<or> x < y" by arith
- moreover
- {assume sm1:"y < x" hence "EX d. x=d+y" by arith
- then obtain d where sm2:"x=d+y"..
- note prems NQ1 NP1 NP2 NQ2 sm1 sm2
- moreover
- have "isnorm (PX P1 d (Pc 0))"
- proof(cases P1)
- case (PX p1 y p2)
- with prems show ?thesis by(cases d, simp,cases p2, auto)
- next case Pc from prems show ?thesis by(cases d, auto)
- next case Pinj from prems show ?thesis by(cases d, auto)
- qed
- ultimately have "isnorm (P2 \<oplus> Q2)" "isnorm (PX P1 (x - y) (Pc 0) \<oplus> Q1)" by auto
- with Y0 sm1 sm2 have ?case by (simp add: mkPX_cn)}
- moreover
- {assume "x=y"
- from prems NP1 NP2 NQ1 NQ2 have "isnorm (P2 \<oplus> Q2)" "isnorm (P1 \<oplus> Q1)" by auto
- with Y0 prems have ?case by (simp add: mkPX_cn) }
- moreover
- {assume sm1:"x<y" hence "EX d. y=d+x" by arith
- then obtain d where sm2:"y=d+x"..
- note prems NQ1 NP1 NP2 NQ2 sm1 sm2
- moreover
- have "isnorm (PX Q1 d (Pc 0))"
- proof(cases Q1)
- case (PX p1 y p2)
- with prems show ?thesis by(cases d, simp,cases p2, auto)
- next case Pc from prems show ?thesis by(cases d, auto)
- next case Pinj from prems show ?thesis by(cases d, auto)
- qed
- ultimately have "isnorm (P2 \<oplus> Q2)" "isnorm (PX Q1 (y - x) (Pc 0) \<oplus> P1)" by auto
- with X0 sm1 sm2 have ?case by (simp add: mkPX_cn)}
- ultimately show ?case by blast
-qed simp
-
-text {* mul concerves normalizedness *}
-lemma mul_cn :"isnorm P \<Longrightarrow> isnorm Q \<Longrightarrow> isnorm (P \<otimes> Q)"
-proof(induct P Q rule: mul.induct)
- case (2 c i P2) thus ?case
- by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn)
-next
- case (3 i P2 c) thus ?case
- by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn)
-next
- case (4 c P2 i Q2)
- from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
- with prems show ?case
- by - (case_tac "c=0",simp_all,case_tac "i=0",simp_all add: mkPX_cn)
-next
- case (5 P2 i Q2 c)
- from prems have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
- with prems show ?case
- by - (case_tac "c=0",simp_all,case_tac "i=0",simp_all add: mkPX_cn)
-next
- case (6 x P2 y Q2)
- have "x < y \<or> x = y \<or> x > y" by arith
- moreover
- { assume "x<y" hence "EX d. y=d+x" by arith
- then obtain d where "y=d+x"..
- moreover
- note prems
- moreover
- from prems have "x>0" by (cases x, auto simp add: norm_Pinj_0_False)
- moreover
- from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- with prems have "isnorm (Pinj d Q2)" by (cases d, simp, cases Q2, auto)
- ultimately have ?case by (simp add: mkPinj_cn)}
- moreover
- { assume "x=y"
- moreover
- from prems have "isnorm P2" "isnorm Q2" by(auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- with prems have "y>0" by (cases y, auto simp add: norm_Pinj_0_False)
- moreover
- note prems
- moreover
- ultimately have ?case by (simp add: mkPinj_cn) }
- moreover
- { assume "x>y" hence "EX d. x=d+y" by arith
- then obtain d where "x=d+y"..
- moreover
- note prems
- moreover
- from prems have "y>0" by (cases y, auto simp add: norm_Pinj_0_False)
- moreover
- from prems have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
- moreover
- with prems have "isnorm (Pinj d P2)" by (cases d, simp, cases P2, auto)
- ultimately have ?case by (simp add: mkPinj_cn) }
- ultimately show ?case by blast
-next
- case (7 x P2 Q2 y R)
- from prems have Y0:"y>0" by(cases y, auto)
- have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
- moreover
- { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
- moreover
- { assume "x=1"
- from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (R \<otimes> P2)" "isnorm Q2" by (auto simp add: norm_PX1[of Q2 y R])
- with Y0 prems have ?case by (simp add: mkPX_cn)}
- moreover
- { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
- then obtain d where X:"x=Suc (Suc d)" ..
- from prems have NR:"isnorm R" "isnorm Q2" by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
- moreover
- from prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
- moreover
- from prems have "isnorm (Pinj x P2)" by(cases P2, auto)
- moreover
- note prems
- ultimately have "isnorm (R \<otimes> Pinj (x - 1) P2)" "isnorm (Pinj x P2 \<otimes> Q2)" by auto
- with Y0 X have ?case by (simp add: mkPX_cn)}
- ultimately show ?case by blast
-next
- case (8 Q2 y R x P2)
- from prems have Y0:"y>0" by(cases y, auto)
- have "x=0 \<or> (x = 1) \<or> (x > 1)" by arith
- moreover
- { assume "x=0" with prems have ?case by (auto simp add: norm_Pinj_0_False)}
- moreover
- { assume "x=1"
- from prems have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
- with prems have "isnorm (R \<otimes> P2)" "isnorm Q2" by (auto simp add: norm_PX1[of Q2 y R])
- with Y0 prems have ?case by (simp add: mkPX_cn) }
- moreover
- { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith
- then obtain d where X:"x=Suc (Suc d)" ..
- from prems have NR:"isnorm R" "isnorm Q2" by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
- moreover
- from prems have "isnorm (Pinj (x - 1) P2)" by(cases P2, auto)
- moreover
- from prems have "isnorm (Pinj x P2)" by(cases P2, auto)
- moreover
- note prems
- ultimately have "isnorm (R \<otimes> Pinj (x - 1) P2)" "isnorm (Pinj x P2 \<otimes> Q2)" by auto
- with Y0 X have ?case by (simp add: mkPX_cn) }
- ultimately show ?case by blast
-next
- case (9 P1 x P2 Q1 y Q2)
- from prems have X0:"x>0" by(cases x, auto)
- from prems have Y0:"y>0" by(cases y, auto)
- note prems
- moreover
- from prems have "isnorm P1" "isnorm P2" by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
- moreover
- from prems have "isnorm Q1" "isnorm Q2" by (auto simp add: norm_PX1[of Q1 y Q2] norm_PX2[of Q1 y Q2])
- ultimately have "isnorm (P1 \<otimes> Q1)" "isnorm (P2 \<otimes> Q2)"
- "isnorm (P1 \<otimes> mkPinj 1 Q2)" "isnorm (Q1 \<otimes> mkPinj 1 P2)"
- by (auto simp add: mkPinj_cn)
- with prems X0 Y0 have
- "isnorm (mkPX (P1 \<otimes> Q1) (x + y) (P2 \<otimes> Q2))"
- "isnorm (mkPX (P1 \<otimes> mkPinj (Suc 0) Q2) x (Pc 0))"
- "isnorm (mkPX (Q1 \<otimes> mkPinj (Suc 0) P2) y (Pc 0))"
- by (auto simp add: mkPX_cn)
- thus ?case by (simp add: add_cn)
-qed(simp)
-
-text {* neg conserves normalizedness *}
-lemma neg_cn: "isnorm P \<Longrightarrow> isnorm (neg P)"
-proof (induct P)
- case (Pinj i P2)
- from prems have "isnorm P2" by (simp add: norm_Pinj[of i P2])
- with prems show ?case by(cases P2, auto, cases i, auto)
-next
- case (PX P1 x P2)
- from prems have "isnorm P2" "isnorm P1" by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
- with prems show ?case
- proof(cases P1)
- case (PX p1 y p2)
- with prems show ?thesis by(cases x, auto, cases p2, auto)
- next
- case Pinj
- with prems show ?thesis by(cases x, auto)
- qed(cases x, auto)
-qed(simp)
-
-text {* sub conserves normalizedness *}
-lemma sub_cn:"isnorm p \<Longrightarrow> isnorm q \<Longrightarrow> isnorm (p \<ominus> q)"
-by (simp add: sub_def add_cn neg_cn)
-
-text {* sqr conserves normalizizedness *}
-lemma sqr_cn:"isnorm P \<Longrightarrow> isnorm (sqr P)"
-proof(induct P)
- case (Pinj i Q)
- from prems show ?case by(cases Q, auto simp add: mkPX_cn mkPinj_cn, cases i, auto simp add: mkPX_cn mkPinj_cn)
-next
- case (PX P1 x P2)
- from prems have "x+x~=0" "isnorm P2" "isnorm P1" by (cases x, auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
- with prems have
- "isnorm (mkPX (Pc (1 + 1) \<otimes> P1 \<otimes> mkPinj (Suc 0) P2) x (Pc 0))"
- and "isnorm (mkPX (sqr P1) (x + x) (sqr P2))"
- by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
- thus ?case by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
-qed simp
-
-text {* pow conserves normalizedness *}
-lemma pow_cn:"isnorm P \<Longrightarrow> isnorm (pow n P)"
-proof (induct n arbitrary: P rule: nat_less_induct)
- case (1 k)
- show ?case
- proof (cases "k=0")
- case False
- then have K2:"k div 2 < k" by (cases k, auto)
- from prems have "isnorm (sqr P)" by (simp add: sqr_cn)
- with prems K2 show ?thesis
- by (simp add: allE[of _ "(k div 2)" _] allE[of _ "(sqr P)" _], cases k, auto simp add: mul_cn)
- qed simp
-qed
-
-end