src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
changeset 56261 918432e3fcfa
parent 56238 5d147e1e18d1
child 56332 289dd9166d04
--- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Sun Mar 23 16:40:35 2014 +0100
+++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Mon Mar 24 14:22:29 2014 +0000
@@ -253,16 +253,6 @@
 
 subsection{*DERIV stuff*}
 
-(*move some premises to a sensible order. Use more \<And> symbols.*)
-
-lemma DERIV_continuous_on: "\<lbrakk>\<And>x. x \<in> s \<Longrightarrow> DERIV f x :> D\<rbrakk> \<Longrightarrow> continuous_on s f"
-  by (metis DERIV_continuous continuous_at_imp_continuous_on)
-
-lemma DERIV_subset: 
-  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s 
-   \<Longrightarrow> (f has_field_derivative f') (at x within t)"
-  by (simp add: has_field_derivative_def has_derivative_within_subset)
-
 lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
   by auto
 
@@ -496,28 +486,6 @@
   apply (simp add: lambda_one [symmetric])
   done
 
-(*DERIV_minus*)
-lemma field_differentiable_minus:
-  assumes "(f has_field_derivative f') F" 
-    shows "((\<lambda>z. - (f z)) has_field_derivative -f') F"
-  apply (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
-  using assms 
-  by (auto simp: has_field_derivative_def field_simps mult_commute_abs)
-
-(*DERIV_add*)
-lemma field_differentiable_add:
-  assumes "(f has_field_derivative f') F" "(g has_field_derivative g') F"
-    shows "((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
-  apply (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
-  using assms 
-  by (auto simp: has_field_derivative_def field_simps mult_commute_abs)
-
-(*DERIV_diff*)
-lemma field_differentiable_diff:
-  assumes "(f has_field_derivative f') F" "(g has_field_derivative g') F"
-    shows "((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
-by (simp only: assms diff_conv_add_uminus field_differentiable_add field_differentiable_minus)
-
 lemma complex_differentiable_minus:
     "f complex_differentiable F \<Longrightarrow> (\<lambda>z. -(f z)) complex_differentiable F"
   using assms unfolding complex_differentiable_def