--- a/src/HOL/Probability/Stream_Space.thy Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Probability/Stream_Space.thy Tue May 17 14:10:14 2022 +0100
@@ -493,7 +493,7 @@
proof (safe intro!: sets_Sup_in_sets del: subsetI equalityI)
fix i :: nat
show "space (?V i) = space ?R"
- using scylinder_streams by (subst space_measure_of) (auto simp: )
+ using scylinder_streams by (subst space_measure_of) auto
{ fix A assume "A \<in> G"
then have "scylinder (space S) (replicate i (space S) @ [A]) = (\<lambda>s. s !! i) -` A \<inter> streams (space S)"
by (induction i) (auto simp add: streams_shd streams_stl cong: conj_cong)