src/HOL/Number_Theory/Cong.thy
changeset 66888 930abfdf8727
parent 66837 6ba663ff2b1c
child 66954 0230af0f3c59
--- a/src/HOL/Number_Theory/Cong.thy	Fri Oct 20 23:29:43 2017 +0200
+++ b/src/HOL/Number_Theory/Cong.thy	Fri Oct 20 20:57:55 2017 +0200
@@ -32,236 +32,187 @@
   imports "HOL-Computational_Algebra.Primes"
 begin
 
-subsection \<open>Turn off \<open>One_nat_def\<close>\<close>
-
-lemma power_eq_one_eq_nat [simp]: "x^m = 1 \<longleftrightarrow> m = 0 \<or> x = 1"
-  for x m :: nat
-  by (induct m) auto
-
-declare mod_pos_pos_trivial [simp]
-
-
-subsection \<open>Main definitions\<close>
-
-class cong =
-  fixes cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(1[_ = _] '(()mod _'))")
+subsection \<open>Generic congruences\<close>
+ 
+context unique_euclidean_semiring
 begin
 
+definition cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(1[_ = _] '(()mod _'))")
+  where "cong b c a \<longleftrightarrow> b mod a = c mod a"
+  
 abbreviation notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(1[_ \<noteq> _] '(()mod _'))")
-  where "notcong x y m \<equiv> \<not> cong x y m"
+  where "notcong b c a \<equiv> \<not> cong b c a"
+
+lemma cong_mod_left [simp]:
+  "[b mod a = c] (mod a) \<longleftrightarrow> [b = c] (mod a)"
+  by (simp add: cong_def)  
+
+lemma cong_mod_right [simp]:
+  "[b = c mod a] (mod a) \<longleftrightarrow> [b = c] (mod a)"
+  by (simp add: cong_def)  
+
+lemma cong_dvd_iff:
+  "a dvd b \<longleftrightarrow> a dvd c" if "[b = c] (mod a)"
+  using that by (auto simp: cong_def dvd_eq_mod_eq_0)
+
+lemma cong_0 [simp, presburger]:
+  "[b = c] (mod 0) \<longleftrightarrow> b = c"
+  by (simp add: cong_def)
+
+lemma cong_1 [simp, presburger]:
+  "[b = c] (mod 1)"
+  by (simp add: cong_def)
+
+lemma cong_refl [simp]:
+  "[b = b] (mod a)"
+  by (simp add: cong_def)
+
+lemma cong_sym: 
+  "[b = c] (mod a) \<Longrightarrow> [c = b] (mod a)"
+  by (simp add: cong_def)
+
+lemma cong_sym_eq:
+  "[b = c] (mod a) \<longleftrightarrow> [c = b] (mod a)"
+  by (auto simp add: cong_def)
+
+lemma cong_trans [trans]:
+  "[b = c] (mod a) \<Longrightarrow> [c = d] (mod a) \<Longrightarrow> [b = d] (mod a)"
+  by (simp add: cong_def)
+
+lemma cong_add:
+  "[b = c] (mod a) \<Longrightarrow> [d = e] (mod a) \<Longrightarrow> [b + d = c + e] (mod a)"
+  by (auto simp add: cong_def intro: mod_add_cong)
+
+lemma cong_mult:
+  "[b = c] (mod a) \<Longrightarrow> [d = e] (mod a) \<Longrightarrow> [b * d = c * e] (mod a)"
+  by (auto simp add: cong_def intro: mod_mult_cong)
+
+lemma cong_pow:
+  "[b = c] (mod a) \<Longrightarrow> [b ^ n = c ^ n] (mod a)"
+  by (simp add: cong_def power_mod [symmetric, of b n a] power_mod [symmetric, of c n a])
+
+lemma cong_sum:
+  "[sum f A = sum g A] (mod a)" if "\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod a)"
+  using that by (induct A rule: infinite_finite_induct) (auto intro: cong_add)
+
+lemma cong_prod:
+  "[prod f A = prod g A] (mod a)" if "(\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod a))"
+  using that by (induct A rule: infinite_finite_induct) (auto intro: cong_mult)
+
+lemma cong_scalar_right:
+  "[b = c] (mod a) \<Longrightarrow> [b * d = c * d] (mod a)"
+  by (simp add: cong_mult)
+
+lemma cong_scalar_left:
+  "[b = c] (mod a) \<Longrightarrow> [d * b = d * c] (mod a)"
+  by (simp add: cong_mult)
+
+lemma cong_mult_self_right: "[b * a = 0] (mod a)"
+  by (simp add: cong_def)
+
+lemma cong_mult_self_left: "[a * b = 0] (mod a)"
+  by (simp add: cong_def)
+
+lemma cong_0_iff: "[b = 0] (mod a) \<longleftrightarrow> a dvd b"
+  by (simp add: cong_def dvd_eq_mod_eq_0)
+
+lemma mod_mult_cong_right:
+  "[c mod (a * b) = d] (mod a) \<longleftrightarrow> [c = d] (mod a)"
+  by (simp add: cong_def mod_mod_cancel mod_add_left_eq)
+
+lemma mod_mult_cong_left:
+  "[c mod (b * a) = d] (mod a) \<longleftrightarrow> [c = d] (mod a)"
+  using mod_mult_cong_right [of c a b d] by (simp add: ac_simps)
+
+end
+
+context unique_euclidean_ring
+begin
+
+lemma cong_diff:
+  "[b = c] (mod a) \<Longrightarrow> [d = e] (mod a) \<Longrightarrow> [b - d = c - e] (mod a)"
+  by (auto simp add: cong_def intro: mod_diff_cong)
+
+lemma cong_diff_iff_cong_0:
+  "[b - c = 0] (mod a) \<longleftrightarrow> [b = c] (mod a)" (is "?P \<longleftrightarrow> ?Q")
+proof
+  assume ?P
+  then have "[b - c + c = 0 + c] (mod a)"
+    by (rule cong_add) simp
+  then show ?Q
+    by simp
+next
+  assume ?Q
+  with cong_diff [of b c a c c] show ?P
+    by simp
+qed
+
+lemma cong_minus_minus_iff:
+  "[- b = - c] (mod a) \<longleftrightarrow> [b = c] (mod a)"
+  using cong_diff_iff_cong_0 [of b c a] cong_diff_iff_cong_0 [of "- b" "- c" a]
+  by (simp add: cong_0_iff dvd_diff_commute)
+
+lemma cong_modulus_minus_iff: "[b = c] (mod - a) \<longleftrightarrow> [b = c] (mod a)"
+  using cong_diff_iff_cong_0 [of b c a] cong_diff_iff_cong_0 [of b c " -a"]
+  by (simp add: cong_0_iff)
 
 end
 
 
-subsubsection \<open>Definitions for the natural numbers\<close>
-
-instantiation nat :: cong
-begin
-
-definition cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
-  where "cong_nat x y m \<longleftrightarrow> x mod m = y mod m"
-
-instance ..
-
-end
-
-
-subsubsection \<open>Definitions for the integers\<close>
-
-instantiation int :: cong
-begin
-
-definition cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
-  where "cong_int x y m \<longleftrightarrow> x mod m = y mod m"
-
-instance ..
-
-end
-
-
-subsection \<open>Set up Transfer\<close>
-
+subsection \<open>Congruences on @{typ nat} and @{typ int}\<close>
 
 lemma transfer_nat_int_cong:
   "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> m \<ge> 0 \<Longrightarrow> [nat x = nat y] (mod (nat m)) \<longleftrightarrow> [x = y] (mod m)"
   for x y m :: int
-  unfolding cong_int_def cong_nat_def
-  by (metis int_nat_eq nat_mod_distrib zmod_int)
+  by (auto simp add: cong_def nat_mod_distrib [symmetric])
+     (metis eq_nat_nat_iff le_less mod_by_0 pos_mod_conj)
 
 declare transfer_morphism_nat_int [transfer add return: transfer_nat_int_cong]
 
-lemma transfer_int_nat_cong: "[int x = int y] (mod (int m)) = [x = y] (mod m)"
-  by (auto simp add: cong_int_def cong_nat_def) (auto simp add: zmod_int [symmetric])
+lemma cong_int_iff:
+  "[int m = int q] (mod int n) \<longleftrightarrow> [m = q] (mod n)"
+  by (simp add: cong_def of_nat_mod [symmetric])
+
+lemma transfer_int_nat_cong:
+  "[int x = int y] (mod (int m)) = [x = y] (mod m)"
+  by (fact cong_int_iff)
 
 declare transfer_morphism_int_nat [transfer add return: transfer_int_nat_cong]
 
-
-subsection \<open>Congruence\<close>
-
-(* was zcong_0, etc. *)
-lemma cong_0_nat [simp, presburger]: "[a = b] (mod 0) \<longleftrightarrow> a = b"
-  for a b :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_0_int [simp, presburger]: "[a = b] (mod 0) \<longleftrightarrow> a = b"
-  for a b :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_1_nat [simp, presburger]: "[a = b] (mod 1)"
-  for a b :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_Suc_0_nat [simp, presburger]: "[a = b] (mod Suc 0)"
-  for a b :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_1_int [simp, presburger]: "[a = b] (mod 1)"
-  for a b :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_refl_nat [simp]: "[k = k] (mod m)"
-  for k :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_refl_int [simp]: "[k = k] (mod m)"
-  for k :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_sym_nat: "[a = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  for a b :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_sym_int: "[a = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  for a b :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_sym_eq_nat: "[a = b] (mod m) = [b = a] (mod m)"
-  for a b :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_sym_eq_int: "[a = b] (mod m) = [b = a] (mod m)"
-  for a b :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_trans_nat [trans]: "[a = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  for a b c :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_trans_int [trans]: "[a = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  for a b c :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_add_nat: "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  for a b c :: nat
-  unfolding cong_nat_def by (metis mod_add_cong)
-
-lemma cong_add_int: "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  for a b c :: int
-  unfolding cong_int_def by (metis mod_add_cong)
-
-lemma cong_diff_int: "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
-  for a b c :: int
-  unfolding cong_int_def by (metis mod_diff_cong)
+lemma cong_Suc_0 [simp, presburger]:
+  "[m = n] (mod Suc 0)"
+  using cong_1 [of m n] by simp
 
 lemma cong_diff_aux_int:
   "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow>
     a \<ge> c \<Longrightarrow> b \<ge> d \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
   for a b c d :: int
-  by (metis cong_diff_int tsub_eq)
+  by (metis cong_diff tsub_eq)
 
 lemma cong_diff_nat:
-  fixes a b c d :: nat
-  assumes "[a = b] (mod m)" "[c = d] (mod m)" "a \<ge> c" "b \<ge> d"
-  shows "[a - c = b - d] (mod m)"
-  using assms by (rule cong_diff_aux_int [transferred])
-
-lemma cong_mult_nat: "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  for a b c d :: nat
-  unfolding cong_nat_def  by (metis mod_mult_cong)
-
-lemma cong_mult_int: "[a = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  for a b c d :: int
-  unfolding cong_int_def  by (metis mod_mult_cong)
-
-lemma cong_exp_nat: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  for x y :: nat
-  by (induct k) (auto simp: cong_mult_nat)
-
-lemma cong_exp_int: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  for x y :: int
-  by (induct k) (auto simp: cong_mult_int)
-
-lemma cong_sum_nat: "(\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod m)) \<Longrightarrow> [(\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. g x)] (mod m)"
-  for f g :: "'a \<Rightarrow> nat"
-  by (induct A rule: infinite_finite_induct) (auto intro: cong_add_nat)
-
-lemma cong_sum_int: "(\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod m)) \<Longrightarrow> [(\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. g x)] (mod m)"
-  for f g :: "'a \<Rightarrow> int"
-  by (induct A rule: infinite_finite_induct) (auto intro: cong_add_int)
-
-lemma cong_prod_nat: "(\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod m)) \<Longrightarrow> [(\<Prod>x\<in>A. f x) = (\<Prod>x\<in>A. g x)] (mod m)"
-  for f g :: "'a \<Rightarrow> nat"
-  by (induct A rule: infinite_finite_induct) (auto intro: cong_mult_nat)
+  "[a - c = b - d] (mod m)" if "[a = b] (mod m)" "[c = d] (mod m)"
+    and "a \<ge> c" "b \<ge> d" for a b c d m :: nat 
+  using that by (rule cong_diff_aux_int [transferred])
 
-lemma cong_prod_int: "(\<And>x. x \<in> A \<Longrightarrow> [f x = g x] (mod m)) \<Longrightarrow> [(\<Prod>x\<in>A. f x) = (\<Prod>x\<in>A. g x)] (mod m)"
-  for f g :: "'a \<Rightarrow> int"
-  by (induct A rule: infinite_finite_induct) (auto intro: cong_mult_int)
-
-lemma cong_scalar_nat: "[a = b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  for a b k :: nat
-  by (rule cong_mult_nat) simp_all
-
-lemma cong_scalar_int: "[a = b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  for a b k :: int
-  by (rule cong_mult_int) simp_all
-
-lemma cong_scalar2_nat: "[a = b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  for a b k :: nat
-  by (rule cong_mult_nat) simp_all
+lemma cong_diff_iff_cong_0_aux_int: "a \<ge> b \<Longrightarrow> [tsub a b = 0] (mod m) = [a = b] (mod m)"
+  for a b :: int
+  by (subst tsub_eq, assumption, rule cong_diff_iff_cong_0)
 
-lemma cong_scalar2_int: "[a = b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  for a b k :: int
-  by (rule cong_mult_int) simp_all
-
-lemma cong_mult_self_nat: "[a * m = 0] (mod m)"
-  for a m :: nat
-  by (auto simp: cong_nat_def)
-
-lemma cong_mult_self_int: "[a * m = 0] (mod m)"
-  for a m :: int
-  by (auto simp: cong_int_def)
-
-lemma cong_eq_diff_cong_0_int: "[a = b] (mod m) = [a - b = 0] (mod m)"
-  for a b :: int
-  by (metis cong_add_int cong_diff_int cong_refl_int diff_add_cancel diff_self)
-
-lemma cong_eq_diff_cong_0_aux_int: "a \<ge> b \<Longrightarrow> [a = b] (mod m) = [tsub a b = 0] (mod m)"
-  for a b :: int
-  by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int)
-
-lemma cong_eq_diff_cong_0_nat:
+lemma cong_diff_iff_cong_0_nat:
   fixes a b :: nat
   assumes "a \<ge> b"
-  shows "[a = b] (mod m) = [a - b = 0] (mod m)"
-  using assms by (rule cong_eq_diff_cong_0_aux_int [transferred])
-
-lemma cong_diff_cong_0'_nat:
-  "[x = y] (mod n) \<longleftrightarrow> (if x \<le> y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
-  for x y :: nat
-  by (metis cong_eq_diff_cong_0_nat cong_sym_nat nat_le_linear)
+  shows "[a - b = 0] (mod m) = [a = b] (mod m)"
+  using assms by (rule cong_diff_iff_cong_0_aux_int [transferred])
 
 lemma cong_altdef_nat: "a \<ge> b \<Longrightarrow> [a = b] (mod m) \<longleftrightarrow> m dvd (a - b)"
   for a b :: nat
-  apply (subst cong_eq_diff_cong_0_nat, assumption)
-  apply (unfold cong_nat_def)
-  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
-  done
+  by (simp add: cong_0_iff [symmetric] cong_diff_iff_cong_0_nat)
 
 lemma cong_altdef_int: "[a = b] (mod m) \<longleftrightarrow> m dvd (a - b)"
   for a b :: int
-  by (metis cong_int_def mod_eq_dvd_iff)
+  by (simp add: cong_0_iff [symmetric] cong_diff_iff_cong_0)
 
-lemma cong_abs_int: "[x = y] (mod abs m) \<longleftrightarrow> [x = y] (mod m)"
+lemma cong_abs_int [simp]: "[x = y] (mod abs m) \<longleftrightarrow> [x = y] (mod m)"
   for x y :: int
   by (simp add: cong_altdef_int)
 
@@ -289,7 +240,6 @@
   for a k m :: int
   by (simp add: mult.commute cong_mult_rcancel_int)
 
-(* was zcong_zgcd_zmult_zmod *)
 lemma coprime_cong_mult_int:
   "[a = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n \<Longrightarrow> [a = b] (mod m * n)"
   for a b :: int
@@ -302,19 +252,19 @@
 
 lemma cong_less_imp_eq_nat: "0 \<le> a \<Longrightarrow> a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
   for a b :: nat
-  by (auto simp add: cong_nat_def)
+  by (auto simp add: cong_def)
 
 lemma cong_less_imp_eq_int: "0 \<le> a \<Longrightarrow> a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
   for a b :: int
-  by (auto simp add: cong_int_def)
+  by (auto simp add: cong_def)
 
 lemma cong_less_unique_nat: "0 < m \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
   for a m :: nat
-  by (auto simp: cong_nat_def) (metis mod_less_divisor mod_mod_trivial)
+  by (auto simp: cong_def) (metis mod_less_divisor mod_mod_trivial)
 
 lemma cong_less_unique_int: "0 < m \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
   for a m :: int
-  by (auto simp: cong_int_def)  (metis mod_mod_trivial pos_mod_conj)
+  by (auto simp: cong_def)  (metis mod_mod_trivial pos_mod_conj)
 
 lemma cong_iff_lin_int: "[a = b] (mod m) \<longleftrightarrow> (\<exists>k. b = a + m * k)"
   for a b :: int
@@ -334,20 +284,17 @@
   next
     case False
     with \<open>?lhs\<close> show ?rhs
-      apply (subst (asm) cong_sym_eq_nat)
-      apply (auto simp: cong_altdef_nat)
-      apply (metis add_0_right add_diff_inverse dvd_div_mult_self less_or_eq_imp_le mult_0)
-      done
+      by (metis cong_def mult.commute nat_le_linear nat_mod_eq_lemma)
   qed
 next
   assume ?rhs
   then show ?lhs
-    by (metis cong_nat_def mod_mult_self2 mult.commute)
+    by (metis cong_def mult.commute nat_mod_eq_iff) 
 qed
 
 lemma cong_gcd_eq_int: "[a = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
   for a b :: int
-  by (metis cong_int_def gcd_red_int)
+  by (auto simp add: cong_def) (metis gcd_red_int)
 
 lemma cong_gcd_eq_nat: "[a = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
   for a b :: nat
@@ -363,11 +310,11 @@
 
 lemma cong_cong_mod_nat: "[a = b] (mod m) \<longleftrightarrow> [a mod m = b mod m] (mod m)"
   for a b :: nat
-  by (auto simp add: cong_nat_def)
+  by simp
 
 lemma cong_cong_mod_int: "[a = b] (mod m) \<longleftrightarrow> [a mod m = b mod m] (mod m)"
   for a b :: int
-  by (auto simp add: cong_int_def)
+  by simp
 
 lemma cong_minus_int [iff]: "[a = b] (mod - m) \<longleftrightarrow> [a = b] (mod m)"
   for a b :: int
@@ -434,53 +381,6 @@
   for x y :: int
   by (auto simp add: cong_altdef_int dvd_def)
 
-lemma cong_dvd_eq_nat: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  for x y :: nat
-  by (auto simp: cong_nat_def dvd_eq_mod_eq_0)
-
-lemma cong_dvd_eq_int: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  for x y :: int
-  by (auto simp: cong_int_def dvd_eq_mod_eq_0)
-
-lemma cong_mod_nat: "n \<noteq> 0 \<Longrightarrow> [a mod n = a] (mod n)"
-  for a n :: nat
-  by (simp add: cong_nat_def)
-
-lemma cong_mod_int: "n \<noteq> 0 \<Longrightarrow> [a mod n = a] (mod n)"
-  for a n :: int
-  by (simp add: cong_int_def)
-
-lemma mod_mult_cong_nat: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  for a b :: nat
-  by (simp add: cong_nat_def mod_mult2_eq  mod_add_left_eq)
-
-lemma neg_cong_int: "[a = b] (mod m) \<longleftrightarrow> [- a = - b] (mod m)"
-  for a b :: int
-  by (metis cong_int_def minus_minus mod_minus_cong)
-
-lemma cong_modulus_neg_int: "[a = b] (mod m) \<longleftrightarrow> [a = b] (mod - m)"
-  for a b :: int
-  by (auto simp add: cong_altdef_int)
-
-lemma mod_mult_cong_int: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  for a b :: int
-proof (cases "b > 0")
-  case True
-  then show ?thesis
-    by (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
-next
-  case False
-  then show ?thesis
-    apply (subst (1 2) cong_modulus_neg_int)
-    apply (unfold cong_int_def)
-    apply (subgoal_tac "a * b = (- a * - b)")
-     apply (erule ssubst)
-     apply (subst zmod_zmult2_eq)
-      apply (auto simp add: mod_add_left_eq mod_minus_right div_minus_right)
-     apply (metis mod_diff_left_eq mod_diff_right_eq mod_mult_self1_is_0 diff_zero)+
-    done
-qed
-
 lemma cong_to_1_nat:
   fixes a :: nat
   assumes "[a = 1] (mod n)"
@@ -494,15 +394,15 @@
 qed
 
 lemma cong_0_1_nat': "[0 = Suc 0] (mod n) \<longleftrightarrow> n = Suc 0"
-  by (auto simp: cong_nat_def)
+  by (auto simp: cong_def)
 
 lemma cong_0_1_nat: "[0 = 1] (mod n) \<longleftrightarrow> n = 1"
   for n :: nat
-  by (auto simp: cong_nat_def)
+  by (auto simp: cong_def)
 
 lemma cong_0_1_int: "[0 = 1] (mod n) \<longleftrightarrow> n = 1 \<or> n = - 1"
   for n :: int
-  by (auto simp: cong_int_def zmult_eq_1_iff)
+  by (auto simp: cong_def zmult_eq_1_iff)
 
 lemma cong_to_1'_nat: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
   for a :: nat
@@ -524,7 +424,7 @@
   case False
   then show ?thesis
     using bezout_nat [of a n, OF \<open>a \<noteq> 0\<close>]
-    by auto (metis cong_add_rcancel_0_nat cong_mult_self_nat mult.commute)
+    by auto (metis cong_add_rcancel_0_nat cong_mult_self_left)
 qed
 
 lemma cong_solve_int: "a \<noteq> 0 \<Longrightarrow> \<exists>x. [a * x = gcd a n] (mod n)"
@@ -546,7 +446,7 @@
   from cong_solve_nat [OF a] obtain x where "[a * x = gcd a n](mod n)"
     by auto
   then have "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
-    by (elim cong_scalar2_nat)
+    using cong_scalar_left by blast
   also from b have "(d div gcd a n) * gcd a n = d"
     by (rule dvd_div_mult_self)
   also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
@@ -562,7 +462,7 @@
   from cong_solve_int [OF a] obtain x where "[a * x = gcd a n](mod n)"
     by auto
   then have "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
-    by (elim cong_scalar2_int)
+    using cong_scalar_left by blast
   also from b have "(d div gcd a n) * gcd a n = d"
     by (rule dvd_div_mult_self)
   also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
@@ -577,10 +477,12 @@
   shows "\<exists>x. [a * x = 1] (mod n)"
 proof (cases "a = 0")
   case True
-  with assms show ?thesis by force
+  with assms show ?thesis
+    by (simp add: cong_0_1_nat') 
 next
   case False
-  with assms show ?thesis by (metis cong_solve_nat)
+  with assms show ?thesis
+    by (metis cong_solve_nat)
 qed
 
 lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow> \<exists>x. [a * x = 1] (mod n)"
@@ -598,14 +500,14 @@
 lemma coprime_iff_invertible_int: "m > 0 \<Longrightarrow> coprime a m \<longleftrightarrow> (\<exists>x. [a * x = 1] (mod m))"
   for m :: int
   apply (auto intro: cong_solve_coprime_int)
-  apply (metis cong_int_def coprime_mul_eq gcd_1_int gcd.commute gcd_red_int)
+  using cong_gcd_eq_int coprime_mul_eq' apply fastforce
   done
 
 lemma coprime_iff_invertible'_nat:
   "m > 0 \<Longrightarrow> coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = Suc 0] (mod m))"
   apply (subst coprime_iff_invertible_nat)
    apply auto
-  apply (auto simp add: cong_nat_def)
+  apply (auto simp add: cong_def)
   apply (metis mod_less_divisor mod_mult_right_eq)
   done
 
@@ -613,35 +515,35 @@
   "m > 0 \<Longrightarrow> coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = 1] (mod m))"
   for m :: int
   apply (subst coprime_iff_invertible_int)
-   apply (auto simp add: cong_int_def)
+   apply (auto simp add: cong_def)
   apply (metis mod_mult_right_eq pos_mod_conj)
   done
 
 lemma cong_cong_lcm_nat: "[x = y] (mod a) \<Longrightarrow> [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
   for x y :: nat
   apply (cases "y \<le> x")
-  apply (metis cong_altdef_nat lcm_least)
-  apply (meson cong_altdef_nat cong_sym_nat lcm_least_iff nat_le_linear)
+   apply (simp add: cong_altdef_nat)
+  apply (meson cong_altdef_nat cong_sym lcm_least_iff nat_le_linear)
   done
 
 lemma cong_cong_lcm_int: "[x = y] (mod a) \<Longrightarrow> [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
   for x y :: int
   by (auto simp add: cong_altdef_int lcm_least)
 
-lemma cong_cong_prod_coprime_nat [rule_format]: "finite A \<Longrightarrow>
-    (\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (\<forall>i\<in>A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (\<Prod>i\<in>A. m i))"
-  apply (induct set: finite)
-  apply auto
+lemma cong_cong_prod_coprime_nat:
+  "[x = y] (mod (\<Prod>i\<in>A. m i))" if
+    "(\<forall>i\<in>A. [(x::nat) = y] (mod m i))"
+    and "(\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j)))"
+  using that apply (induct A rule: infinite_finite_induct)
+    apply auto
   apply (metis One_nat_def coprime_cong_mult_nat gcd.commute prod_coprime)
   done
 
-lemma cong_cong_prod_coprime_int [rule_format]: "finite A \<Longrightarrow>
-    (\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (\<forall>i\<in>A. [(x::int) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (\<Prod>i\<in>A. m i))"
-  apply (induct set: finite)
+lemma cong_cong_prod_coprime_int [rule_format]:
+  "[x = y] (mod (\<Prod>i\<in>A. m i))" if
+    "(\<forall>i\<in>A. [(x::int) = y] (mod m i))"
+    "(\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j)))"
+  using that apply (induct A rule: infinite_finite_induct)
   apply auto
   apply (metis coprime_cong_mult_int gcd.commute prod_coprime)
   done
@@ -658,9 +560,9 @@
   from cong_solve_coprime_nat [OF b] obtain x2 where 2: "[m2 * x2 = 1] (mod m1)"
     by auto
   have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult.commute) (rule cong_mult_self_nat)
+    by (simp add: cong_mult_self_left)
   moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult.commute) (rule cong_mult_self_nat)
+    by (simp add: cong_mult_self_left)
   ultimately show ?thesis
     using 1 2 by blast
 qed
@@ -677,9 +579,9 @@
   from cong_solve_coprime_int [OF b] obtain x2 where 2: "[m2 * x2 = 1] (mod m1)"
     by auto
   have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult.commute) (rule cong_mult_self_int)
+    by (simp add: cong_mult_self_left)
   moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult.commute) (rule cong_mult_self_int)
+    by (simp add: cong_mult_self_left)
   ultimately show ?thesis
     using 1 2 by blast
 qed
@@ -695,20 +597,10 @@
     by blast
   let ?x = "u1 * b1 + u2 * b2"
   have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_nat)
-     apply (rule cong_scalar2_nat)
-     apply (rule \<open>[b1 = 1] (mod m1)\<close>)
-    apply (rule cong_scalar2_nat)
-    apply (rule \<open>[b2 = 0] (mod m1)\<close>)
-    done
+    using \<open>[b1 = 1] (mod m1)\<close> \<open>[b2 = 0] (mod m1)\<close> cong_add cong_scalar_left by blast
   then have "[?x = u1] (mod m1)" by simp
   have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_nat)
-     apply (rule cong_scalar2_nat)
-     apply (rule \<open>[b1 = 0] (mod m2)\<close>)
-    apply (rule cong_scalar2_nat)
-    apply (rule \<open>[b2 = 1] (mod m2)\<close>)
-    done
+    using \<open>[b1 = 0] (mod m2)\<close> \<open>[b2 = 1] (mod m2)\<close> cong_add cong_scalar_left by blast
   then have "[?x = u2] (mod m2)"
     by simp
   with \<open>[?x = u1] (mod m1)\<close> show ?thesis
@@ -726,20 +618,10 @@
     by blast
   let ?x = "u1 * b1 + u2 * b2"
   have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_int)
-     apply (rule cong_scalar2_int)
-     apply (rule \<open>[b1 = 1] (mod m1)\<close>)
-    apply (rule cong_scalar2_int)
-    apply (rule \<open>[b2 = 0] (mod m1)\<close>)
-    done
+    using \<open>[b1 = 1] (mod m1)\<close> \<open>[b2 = 0] (mod m1)\<close> cong_add cong_scalar_left by blast
   then have "[?x = u1] (mod m1)" by simp
   have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_int)
-     apply (rule cong_scalar2_int)
-     apply (rule \<open>[b1 = 0] (mod m2)\<close>)
-    apply (rule cong_scalar2_int)
-    apply (rule \<open>[b2 = 1] (mod m2)\<close>)
-    done
+    using \<open>[b1 = 0] (mod m2)\<close> \<open>[b2 = 1] (mod m2)\<close> cong_add cong_scalar_left by blast
   then have "[?x = u2] (mod m2)" by simp
   with \<open>[?x = u1] (mod m1)\<close> show ?thesis
     by blast
@@ -750,8 +632,8 @@
   apply (cases "y \<le> x")
    apply (simp add: cong_altdef_nat)
    apply (erule dvd_mult_left)
-  apply (rule cong_sym_nat)
-  apply (subst (asm) cong_sym_eq_nat)
+  apply (rule cong_sym)
+  apply (subst (asm) cong_sym_eq)
   apply (simp add: cong_altdef_nat)
   apply (erule dvd_mult_left)
   done
@@ -764,7 +646,7 @@
 
 lemma cong_less_modulus_unique_nat: "[x = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
   for x y :: nat
-  by (simp add: cong_nat_def)
+  by (simp add: cong_def)
 
 lemma binary_chinese_remainder_unique_nat:
   fixes m1 m2 :: nat
@@ -779,21 +661,19 @@
   from nz have less: "?x < m1 * m2"
     by auto
   have 1: "[?x = u1] (mod m1)"
-    apply (rule cong_trans_nat)
+    apply (rule cong_trans)
      prefer 2
      apply (rule \<open>[y = u1] (mod m1)\<close>)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
+    apply (rule cong_modulus_mult_nat [of _ _ _ m2])
+    apply simp
     done
   have 2: "[?x = u2] (mod m2)"
-    apply (rule cong_trans_nat)
+    apply (rule cong_trans)
      prefer 2
      apply (rule \<open>[y = u2] (mod m2)\<close>)
     apply (subst mult.commute)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
+    apply (rule cong_modulus_mult_nat [of _ _ _ m1])
+    apply simp
     done
   have "\<forall>z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow> z = ?x"
   proof clarify
@@ -801,22 +681,22 @@
     assume "z < m1 * m2"
     assume "[z = u1] (mod m1)" and  "[z = u2] (mod m2)"
     have "[?x = z] (mod m1)"
-      apply (rule cong_trans_nat)
+      apply (rule cong_trans)
        apply (rule \<open>[?x = u1] (mod m1)\<close>)
-      apply (rule cong_sym_nat)
+      apply (rule cong_sym)
       apply (rule \<open>[z = u1] (mod m1)\<close>)
       done
     moreover have "[?x = z] (mod m2)"
-      apply (rule cong_trans_nat)
+      apply (rule cong_trans)
        apply (rule \<open>[?x = u2] (mod m2)\<close>)
-      apply (rule cong_sym_nat)
+      apply (rule cong_sym)
       apply (rule \<open>[z = u2] (mod m2)\<close>)
       done
     ultimately have "[?x = z] (mod m1 * m2)"
-      by (auto intro: coprime_cong_mult_nat a)
+      using a by (auto intro: coprime_cong_mult_nat simp add: mod_mult_cong_left mod_mult_cong_right)
     with \<open>z < m1 * m2\<close> \<open>?x < m1 * m2\<close> show "z = ?x"
       apply (intro cong_less_modulus_unique_nat)
-        apply (auto, erule cong_sym_nat)
+        apply (auto, erule cong_sym)
       done
   qed
   with less 1 2 show ?thesis by auto
@@ -838,7 +718,7 @@
   then obtain x where "[(\<Prod>j \<in> A - {i}. m j) * x = 1] (mod m i)"
     by auto
   moreover have "[(\<Prod>j \<in> A - {i}. m j) * x = 0] (mod (\<Prod>j \<in> A - {i}. m j))"
-    by (subst mult.commute, rule cong_mult_self_nat)
+    by (simp add: cong_0_iff)
   ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] (mod prod m (A - {i}))"
     by blast
 qed
@@ -867,11 +747,11 @@
         by auto
       also have "[u i * b i + (\<Sum>j \<in> A - {i}. u j * b j) =
                   u i * 1 + (\<Sum>j \<in> A - {i}. u j * 0)] (mod m i)"
-        apply (rule cong_add_nat)
-         apply (rule cong_scalar2_nat)
+        apply (rule cong_add)
+         apply (rule cong_scalar_left)
         using b a apply blast
-        apply (rule cong_sum_nat)
-        apply (rule cong_scalar2_nat)
+        apply (rule cong_sum)
+        apply (rule cong_scalar_left)
         using b apply auto
         apply (rule cong_dvd_modulus_nat)
          apply (drule (1) bspec)
@@ -886,11 +766,11 @@
   qed
 qed
 
-lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow>
-    (\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-      (\<forall>i\<in>A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-         [x = y] (mod (\<Prod>i\<in>A. m i))"
-  apply (induct set: finite)
+lemma coprime_cong_prod_nat:
+  "[x = y] (mod (\<Prod>i\<in>A. m i))"
+  if "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+    and "\<forall>i\<in>A. [x = y] (mod m i)" for x y :: nat
+  using that apply (induct A rule: infinite_finite_induct)
   apply auto
   apply (metis One_nat_def coprime_cong_mult_nat gcd.commute prod_coprime)
   done
@@ -914,15 +794,12 @@
     by auto
   have cong: "\<forall>i\<in>A. [?x = u i] (mod m i)"
     apply auto
-    apply (rule cong_trans_nat)
+    apply (rule cong_trans)
      prefer 2
     using one apply auto
-    apply (rule cong_dvd_modulus_nat)
-     apply (rule cong_mod_nat)
-    using prodnz apply auto
-    apply rule
-     apply (rule fin)
-    apply assumption
+    apply (rule cong_dvd_modulus_nat [of _ _ "prod m A"])
+     apply simp
+    using fin apply auto
     done
   have unique: "\<forall>z. z < (\<Prod>i\<in>A. m i) \<and> (\<forall>i\<in>A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
   proof clarify
@@ -931,9 +808,9 @@
     assume zcong: "(\<forall>i\<in>A. [z = u i] (mod m i))"
     have "\<forall>i\<in>A. [?x = z] (mod m i)"
       apply clarify
-      apply (rule cong_trans_nat)
+      apply (rule cong_trans)
       using cong apply (erule bspec)
-      apply (rule cong_sym_nat)
+      apply (rule cong_sym)
       using zcong apply auto
       done
     with fin cop have "[?x = z] (mod (\<Prod>i\<in>A. m i))"
@@ -943,7 +820,7 @@
     with zless less show "z = ?x"
       apply (intro cong_less_modulus_unique_nat)
         apply auto
-      apply (erule cong_sym_nat)
+      apply (erule cong_sym)
       done
   qed
   from less cong unique show ?thesis