--- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Sep 12 11:39:29 2011 -0700
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Sep 12 11:54:20 2011 -0700
@@ -1466,7 +1466,7 @@
apply(rule,rule,rule g[rule_format],assumption)
proof fix x assume "x\<in>s"
have lem3:"\<forall>u. ((\<lambda>n. f' n x u) ---> g' x u) sequentially"
- unfolding Lim_sequentially
+ unfolding LIMSEQ_def
proof(rule,rule,rule)
fix u and e::real assume "e>0"
show "\<exists>N. \<forall>n\<ge>N. dist (f' n x u) (g' x u) < e"