src/HOL/ex/Puzzle.ML
changeset 4089 96fba19bcbe2
parent 3842 b55686a7b22c
child 5069 3ea049f7979d
--- a/src/HOL/ex/Puzzle.ML	Mon Nov 03 12:12:10 1997 +0100
+++ b/src/HOL/ex/Puzzle.ML	Mon Nov 03 12:13:18 1997 +0100
@@ -21,25 +21,25 @@
 by (rtac classical 1);
 by (dtac not_leE 1);
 by (subgoal_tac "f(na) <= f(f(na))" 1);
-by (fast_tac (!claset addIs [Puzzle.f_ax]) 2);
+by (fast_tac (claset() addIs [Puzzle.f_ax]) 2);
 by (rtac Suc_leI 1);
-by (fast_tac (!claset delrules [order_refl] 
+by (fast_tac (claset() delrules [order_refl] 
                       addIs [Puzzle.f_ax, le_less_trans]) 1);
 val lemma = result() RS spec RS mp;
 
 goal Puzzle.thy "n <= f(n)";
-by (fast_tac (!claset addIs [lemma]) 1);
+by (fast_tac (claset() addIs [lemma]) 1);
 qed "lemma1";
 
 goal Puzzle.thy "f(n) < f(Suc(n))";
-by (deepen_tac (!claset addIs [Puzzle.f_ax, le_less_trans, lemma1]) 0 1);
+by (deepen_tac (claset() addIs [Puzzle.f_ax, le_less_trans, lemma1]) 0 1);
 qed "lemma2";
 
 val prems = goal Puzzle.thy "(!!n. f(n) <= f(Suc(n))) ==> m<n --> f(m) <= f(n)";
 by (res_inst_tac[("n","n")]nat_induct 1);
 by (Simp_tac 1);
-by (simp_tac (!simpset addsimps [less_Suc_eq]) 1);
-by (best_tac (!claset addIs (le_trans::prems)) 1);
+by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
+by (best_tac (claset() addIs (le_trans::prems)) 1);
 qed_spec_mp "mono_lemma1";
 
 val [p1,p2] = goal Puzzle.thy
@@ -50,11 +50,11 @@
 qed "mono_lemma";
 
 val prems = goal Puzzle.thy "m <= n ==> f(m) <= f(n)";
-by (fast_tac (!claset addIs ([mono_lemma,less_imp_le,lemma2]@prems)) 1);
+by (fast_tac (claset() addIs ([mono_lemma,less_imp_le,lemma2]@prems)) 1);
 qed "f_mono";
 
 goal Puzzle.thy "f(n) = n";
 by (rtac le_anti_sym 1);
 by (rtac lemma1 2);
-by (fast_tac (!claset addIs [Puzzle.f_ax,leI] addDs [leD,f_mono,Suc_leI]) 1);
+by (fast_tac (claset() addIs [Puzzle.f_ax,leI] addDs [leD,f_mono,Suc_leI]) 1);
 result();