src/CCL/Set.thy
changeset 20140 98acc6d0fab6
parent 17456 bcf7544875b2
child 24825 c4f13ab78f9d
--- a/src/CCL/Set.thy	Mon Jul 17 18:42:38 2006 +0200
+++ b/src/CCL/Set.thy	Tue Jul 18 02:22:38 2006 +0200
@@ -72,7 +72,439 @@
   Inter_def:     "Inter(S)    == (INT x:S. x)"
   Union_def:     "Union(S)    == (UN x:S. x)"
 
-ML {* use_legacy_bindings (the_context ()) *}
+
+lemma CollectI: "[| P(a) |] ==> a : {x. P(x)}"
+  apply (rule mem_Collect_iff [THEN iffD2])
+  apply assumption
+  done
+
+lemma CollectD: "[| a : {x. P(x)} |] ==> P(a)"
+  apply (erule mem_Collect_iff [THEN iffD1])
+  done
+
+lemmas CollectE = CollectD [elim_format]
+
+lemma set_ext: "[| !!x. x:A <-> x:B |] ==> A = B"
+  apply (rule set_extension [THEN iffD2])
+  apply simp
+  done
+
+
+subsection {* Bounded quantifiers *}
+
+lemma ballI: "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
+  by (simp add: Ball_def)
+
+lemma bspec: "[| ALL x:A. P(x);  x:A |] ==> P(x)"
+  by (simp add: Ball_def)
+
+lemma ballE: "[| ALL x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q"
+  unfolding Ball_def by blast
+
+lemma bexI: "[| P(x);  x:A |] ==> EX x:A. P(x)"
+  unfolding Bex_def by blast
+
+lemma bexCI: "[| EX x:A. ~P(x) ==> P(a);  a:A |] ==> EX x:A. P(x)"
+  unfolding Bex_def by blast
+
+lemma bexE: "[| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q"
+  unfolding Bex_def by blast
+
+(*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
+lemma ball_rew: "(ALL x:A. True) <-> True"
+  by (blast intro: ballI)
+
+
+subsection {* Congruence rules *}
+
+lemma ball_cong:
+  "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==>
+    (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"
+  by (blast intro: ballI elim: ballE)
+
+lemma bex_cong:
+  "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==>
+    (EX x:A. P(x)) <-> (EX x:A'. P'(x))"
+  by (blast intro: bexI elim: bexE)
+
+
+subsection {* Rules for subsets *}
+
+lemma subsetI: "(!!x. x:A ==> x:B) ==> A <= B"
+  unfolding subset_def by (blast intro: ballI)
+
+(*Rule in Modus Ponens style*)
+lemma subsetD: "[| A <= B;  c:A |] ==> c:B"
+  unfolding subset_def by (blast elim: ballE)
+
+(*Classical elimination rule*)
+lemma subsetCE: "[| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P"
+  by (blast dest: subsetD)
+
+lemma subset_refl: "A <= A"
+  by (blast intro: subsetI)
+
+lemma subset_trans: "[| A<=B;  B<=C |] ==> A<=C"
+  by (blast intro: subsetI dest: subsetD)
+
+
+subsection {* Rules for equality *}
+
+(*Anti-symmetry of the subset relation*)
+lemma subset_antisym: "[| A <= B;  B <= A |] ==> A = B"
+  by (blast intro: set_ext dest: subsetD)
+
+lemmas equalityI = subset_antisym
+
+(* Equality rules from ZF set theory -- are they appropriate here? *)
+lemma equalityD1: "A = B ==> A<=B"
+  and equalityD2: "A = B ==> B<=A"
+  by (simp_all add: subset_refl)
+
+lemma equalityE: "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
+  by (simp add: subset_refl)
+
+lemma equalityCE:
+    "[| A = B;  [| c:A; c:B |] ==> P;  [| ~ c:A; ~ c:B |] ==> P |]  ==>  P"
+  by (blast elim: equalityE subsetCE)
+
+lemma trivial_set: "{x. x:A} = A"
+  by (blast intro: equalityI subsetI CollectI dest: CollectD)
+
+
+subsection {* Rules for binary union *}
+
+lemma UnI1: "c:A ==> c : A Un B"
+  and UnI2: "c:B ==> c : A Un B"
+  unfolding Un_def by (blast intro: CollectI)+
+
+(*Classical introduction rule: no commitment to A vs B*)
+lemma UnCI: "(~c:B ==> c:A) ==> c : A Un B"
+  by (blast intro: UnI1 UnI2)
+
+lemma UnE: "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P"
+  unfolding Un_def by (blast dest: CollectD)
+
+
+subsection {* Rules for small intersection *}
+
+lemma IntI: "[| c:A;  c:B |] ==> c : A Int B"
+  unfolding Int_def by (blast intro: CollectI)
+
+lemma IntD1: "c : A Int B ==> c:A"
+  and IntD2: "c : A Int B ==> c:B"
+  unfolding Int_def by (blast dest: CollectD)+
+
+lemma IntE: "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P"
+  by (blast dest: IntD1 IntD2)
+
+
+subsection {* Rules for set complement *}
+
+lemma ComplI: "[| c:A ==> False |] ==> c : Compl(A)"
+  unfolding Compl_def by (blast intro: CollectI)
+
+(*This form, with negated conclusion, works well with the Classical prover.
+  Negated assumptions behave like formulae on the right side of the notional
+  turnstile...*)
+lemma ComplD: "[| c : Compl(A) |] ==> ~c:A"
+  unfolding Compl_def by (blast dest: CollectD)
+
+lemmas ComplE = ComplD [elim_format]
+
+
+subsection {* Empty sets *}
+
+lemma empty_eq: "{x. False} = {}"
+  by (simp add: empty_def)
+
+lemma emptyD: "a : {} ==> P"
+  unfolding empty_def by (blast dest: CollectD)
+
+lemmas emptyE = emptyD [elim_format]
+
+lemma not_emptyD:
+  assumes "~ A={}"
+  shows "EX x. x:A"
+proof -
+  have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"
+    by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+
+  with prems show ?thesis by blast
+qed
+
+
+subsection {* Singleton sets *}
+
+lemma singletonI: "a : {a}"
+  unfolding singleton_def by (blast intro: CollectI)
+
+lemma singletonD: "b : {a} ==> b=a"
+  unfolding singleton_def by (blast dest: CollectD)
+
+lemmas singletonE = singletonD [elim_format]
+
+
+subsection {* Unions of families *}
+
+(*The order of the premises presupposes that A is rigid; b may be flexible*)
+lemma UN_I: "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))"
+  unfolding UNION_def by (blast intro: bexI CollectI)
+
+lemma UN_E: "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R"
+  unfolding UNION_def by (blast dest: CollectD elim: bexE)
+
+lemma UN_cong:
+  "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==>
+    (UN x:A. C(x)) = (UN x:B. D(x))"
+  by (simp add: UNION_def cong: bex_cong)
+
+
+subsection {* Intersections of families *}
+
+lemma INT_I: "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"
+  unfolding INTER_def by (blast intro: CollectI ballI)
+
+lemma INT_D: "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)"
+  unfolding INTER_def by (blast dest: CollectD bspec)
+
+(*"Classical" elimination rule -- does not require proving X:C *)
+lemma INT_E: "[| b : (INT x:A. B(x));  b: B(a) ==> R;  ~ a:A ==> R |] ==> R"
+  unfolding INTER_def by (blast dest: CollectD bspec)
+
+lemma INT_cong:
+  "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==>
+    (INT x:A. C(x)) = (INT x:B. D(x))"
+  by (simp add: INTER_def cong: ball_cong)
+
+
+subsection {* Rules for Unions *}
+
+(*The order of the premises presupposes that C is rigid; A may be flexible*)
+lemma UnionI: "[| X:C;  A:X |] ==> A : Union(C)"
+  unfolding Union_def by (blast intro: UN_I)
+
+lemma UnionE: "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R"
+  unfolding Union_def by (blast elim: UN_E)
+
+
+subsection {* Rules for Inter *}
+
+lemma InterI: "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"
+  unfolding Inter_def by (blast intro: INT_I)
+
+(*A "destruct" rule -- every X in C contains A as an element, but
+  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
+lemma InterD: "[| A : Inter(C);  X:C |] ==> A:X"
+  unfolding Inter_def by (blast dest: INT_D)
+
+(*"Classical" elimination rule -- does not require proving X:C *)
+lemma InterE: "[| A : Inter(C);  A:X ==> R;  ~ X:C ==> R |] ==> R"
+  unfolding Inter_def by (blast elim: INT_E)
+
+
+section {* Derived rules involving subsets; Union and Intersection as lattice operations *}
+
+subsection {* Big Union -- least upper bound of a set *}
+
+lemma Union_upper: "B:A ==> B <= Union(A)"
+  by (blast intro: subsetI UnionI)
+
+lemma Union_least: "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"
+  by (blast intro: subsetI dest: subsetD elim: UnionE)
+
+
+subsection {* Big Intersection -- greatest lower bound of a set *}
+
+lemma Inter_lower: "B:A ==> Inter(A) <= B"
+  by (blast intro: subsetI dest: InterD)
+
+lemma Inter_greatest: "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"
+  by (blast intro: subsetI InterI dest: subsetD)
+
+
+subsection {* Finite Union -- the least upper bound of 2 sets *}
+
+lemma Un_upper1: "A <= A Un B"
+  by (blast intro: subsetI UnI1)
+
+lemma Un_upper2: "B <= A Un B"
+  by (blast intro: subsetI UnI2)
+
+lemma Un_least: "[| A<=C;  B<=C |] ==> A Un B <= C"
+  by (blast intro: subsetI elim: UnE dest: subsetD)
+
+
+subsection {* Finite Intersection -- the greatest lower bound of 2 sets *}
+
+lemma Int_lower1: "A Int B <= A"
+  by (blast intro: subsetI elim: IntE)
+
+lemma Int_lower2: "A Int B <= B"
+  by (blast intro: subsetI elim: IntE)
+
+lemma Int_greatest: "[| C<=A;  C<=B |] ==> C <= A Int B"
+  by (blast intro: subsetI IntI dest: subsetD)
+
+
+subsection {* Monotonicity *}
+
+lemma monoI: "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)"
+  unfolding mono_def by blast
+
+lemma monoD: "[| mono(f);  A <= B |] ==> f(A) <= f(B)"
+  unfolding mono_def by blast
+
+lemma mono_Un: "mono(f) ==> f(A) Un f(B) <= f(A Un B)"
+  by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)
+
+lemma mono_Int: "mono(f) ==> f(A Int B) <= f(A) Int f(B)"
+  by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)
+
+
+subsection {* Automated reasoning setup *}
+
+lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI
+  and [intro] = bexI UnionI UN_I
+  and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE
+  and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE
+
+lemma mem_rews:
+  "(a : A Un B)   <->  (a:A | a:B)"
+  "(a : A Int B)  <->  (a:A & a:B)"
+  "(a : Compl(B)) <->  (~a:B)"
+  "(a : {b})      <->  (a=b)"
+  "(a : {})       <->   False"
+  "(a : {x. P(x)}) <->  P(a)"
+  by blast+
+
+lemmas [simp] = trivial_set empty_eq mem_rews
+  and [cong] = ball_cong bex_cong INT_cong UN_cong
+
+
+section {* Equalities involving union, intersection, inclusion, etc. *}
+
+subsection {* Binary Intersection *}
+
+lemma Int_absorb: "A Int A = A"
+  by (blast intro: equalityI)
+
+lemma Int_commute: "A Int B  =  B Int A"
+  by (blast intro: equalityI)
+
+lemma Int_assoc: "(A Int B) Int C  =  A Int (B Int C)"
+  by (blast intro: equalityI)
+
+lemma Int_Un_distrib: "(A Un B) Int C  =  (A Int C) Un (B Int C)"
+  by (blast intro: equalityI)
+
+lemma subset_Int_eq: "(A<=B) <-> (A Int B = A)"
+  by (blast intro: equalityI elim: equalityE)
+
+
+subsection {* Binary Union *}
+
+lemma Un_absorb: "A Un A = A"
+  by (blast intro: equalityI)
+
+lemma Un_commute: "A Un B  =  B Un A"
+  by (blast intro: equalityI)
+
+lemma Un_assoc: "(A Un B) Un C  =  A Un (B Un C)"
+  by (blast intro: equalityI)
+
+lemma Un_Int_distrib: "(A Int B) Un C  =  (A Un C) Int (B Un C)"
+  by (blast intro: equalityI)
+
+lemma Un_Int_crazy:
+    "(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
+  by (blast intro: equalityI)
+
+lemma subset_Un_eq: "(A<=B) <-> (A Un B = B)"
+  by (blast intro: equalityI elim: equalityE)
+
+
+subsection {* Simple properties of @{text "Compl"} -- complement of a set *}
+
+lemma Compl_disjoint: "A Int Compl(A) = {x. False}"
+  by (blast intro: equalityI)
+
+lemma Compl_partition: "A Un Compl(A) = {x. True}"
+  by (blast intro: equalityI)
+
+lemma double_complement: "Compl(Compl(A)) = A"
+  by (blast intro: equalityI)
+
+lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"
+  by (blast intro: equalityI)
+
+lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"
+  by (blast intro: equalityI)
+
+lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"
+  by (blast intro: equalityI)
+
+lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"
+  by (blast intro: equalityI)
+
+(*Halmos, Naive Set Theory, page 16.*)
+lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) <-> (C<=A)"
+  by (blast intro: equalityI elim: equalityE)
+
+
+subsection {* Big Union and Intersection *}
+
+lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
+  by (blast intro: equalityI)
+
+lemma Union_disjoint:
+    "(Union(C) Int A = {x. False}) <-> (ALL B:C. B Int A = {x. False})"
+  by (blast intro: equalityI elim: equalityE)
+
+lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"
+  by (blast intro: equalityI)
+
+
+subsection {* Unions and Intersections of Families *}
+
+lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"
+  by (blast intro: equalityI)
+
+(*Look: it has an EXISTENTIAL quantifier*)
+lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"
+  by (blast intro: equalityI)
+
+lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"
+  by (blast intro: equalityI)
+
+lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"
+  by (blast intro: equalityI)
+
+
+section {* Monotonicity of various operations *}
+
+lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"
+  by blast
+
+lemma Inter_anti_mono: "[| B<=A |] ==> Inter(A) <= Inter(B)"
+  by blast
+
+lemma UN_mono:
+  "[| A<=B;  !!x. x:A ==> f(x)<=g(x) |] ==>  
+    (UN x:A. f(x)) <= (UN x:B. g(x))"
+  by blast
+
+lemma INT_anti_mono:
+  "[| B<=A;  !!x. x:A ==> f(x)<=g(x) |] ==>  
+    (INT x:A. f(x)) <= (INT x:A. g(x))"
+  by blast
+
+lemma Un_mono: "[| A<=C;  B<=D |] ==> A Un B <= C Un D"
+  by blast
+
+lemma Int_mono: "[| A<=C;  B<=D |] ==> A Int B <= C Int D"
+  by blast
+
+lemma Compl_anti_mono: "[| A<=B |] ==> Compl(B) <= Compl(A)"
+  by blast
 
 end
-