src/CCL/Trancl.thy
changeset 20140 98acc6d0fab6
parent 17456 bcf7544875b2
child 24825 c4f13ab78f9d
--- a/src/CCL/Trancl.thy	Mon Jul 17 18:42:38 2006 +0200
+++ b/src/CCL/Trancl.thy	Tue Jul 18 02:22:38 2006 +0200
@@ -26,6 +26,197 @@
   rtrancl_def:     "r^* == lfp(%s. id Un (r O s))"
   trancl_def:      "r^+ == r O rtrancl(r)"
 
-ML {* use_legacy_bindings (the_context ()) *}
+
+subsection {* Natural deduction for @{text "trans(r)"} *}
+
+lemma transI:
+  "(!! x y z. [| <x,y>:r;  <y,z>:r |] ==> <x,z>:r) ==> trans(r)"
+  unfolding trans_def by blast
+
+lemma transD: "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r"
+  unfolding trans_def by blast
+
+
+subsection {* Identity relation *}
+
+lemma idI: "<a,a> : id"
+  apply (unfold id_def)
+  apply (rule CollectI)
+  apply (rule exI)
+  apply (rule refl)
+  done
+
+lemma idE:
+    "[| p: id;  !!x.[| p = <x,x> |] ==> P |] ==>  P"
+  apply (unfold id_def)
+  apply (erule CollectE)
+  apply blast
+  done
+
+
+subsection {* Composition of two relations *}
+
+lemma compI: "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"
+  unfolding comp_def by blast
+
+(*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
+lemma compE:
+    "[| xz : r O s;
+        !!x y z. [| xz = <x,z>;  <x,y>:s;  <y,z>:r |] ==> P
+     |] ==> P"
+  unfolding comp_def by blast
+
+lemma compEpair:
+  "[| <a,c> : r O s;
+      !!y. [| <a,y>:s;  <y,c>:r |] ==> P
+   |] ==> P"
+  apply (erule compE)
+  apply (simp add: pair_inject)
+  done
+
+lemmas [intro] = compI idI
+  and [elim] = compE idE
+  and [elim!] = pair_inject
+
+lemma comp_mono: "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"
+  by blast
+
+
+subsection {* The relation rtrancl *}
+
+lemma rtrancl_fun_mono: "mono(%s. id Un (r O s))"
+  apply (rule monoI)
+  apply (rule monoI subset_refl comp_mono Un_mono)+
+  apply assumption
+  done
+
+lemma rtrancl_unfold: "r^* = id Un (r O r^*)"
+  by (rule rtrancl_fun_mono [THEN rtrancl_def [THEN def_lfp_Tarski]])
+
+(*Reflexivity of rtrancl*)
+lemma rtrancl_refl: "<a,a> : r^*"
+  apply (subst rtrancl_unfold)
+  apply blast
+  done
+
+(*Closure under composition with r*)
+lemma rtrancl_into_rtrancl: "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*"
+  apply (subst rtrancl_unfold)
+  apply blast
+  done
+
+(*rtrancl of r contains r*)
+lemma r_into_rtrancl: "[| <a,b> : r |] ==> <a,b> : r^*"
+  apply (rule rtrancl_refl [THEN rtrancl_into_rtrancl])
+  apply assumption
+  done
+
+
+subsection {* standard induction rule *}
+
+lemma rtrancl_full_induct:
+  "[| <a,b> : r^*;
+      !!x. P(<x,x>);
+      !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]
+   ==>  P(<a,b>)"
+  apply (erule def_induct [OF rtrancl_def])
+   apply (rule rtrancl_fun_mono)
+  apply blast
+  done
+
+(*nice induction rule*)
+lemma rtrancl_induct:
+  "[| <a,b> : r^*;
+      P(a);
+      !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z) |]
+    ==> P(b)"
+(*by induction on this formula*)
+  apply (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)")
+(*now solve first subgoal: this formula is sufficient*)
+  apply blast
+(*now do the induction*)
+  apply (erule rtrancl_full_induct)
+   apply blast
+  apply blast
+  done
+
+(*transitivity of transitive closure!! -- by induction.*)
+lemma trans_rtrancl: "trans(r^*)"
+  apply (rule transI)
+  apply (rule_tac b = z in rtrancl_induct)
+    apply (fast elim: rtrancl_into_rtrancl)+
+  done
+
+(*elimination of rtrancl -- by induction on a special formula*)
+lemma rtranclE:
+  "[| <a,b> : r^*;  (a = b) ==> P;
+      !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |]
+   ==> P"
+  apply (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r)")
+   prefer 2
+   apply (erule rtrancl_induct)
+    apply blast
+   apply blast
+  apply blast
+  done
+
+
+subsection {* The relation trancl *}
+
+subsubsection {* Conversions between trancl and rtrancl *}
+
+lemma trancl_into_rtrancl: "[| <a,b> : r^+ |] ==> <a,b> : r^*"
+  apply (unfold trancl_def)
+  apply (erule compEpair)
+  apply (erule rtrancl_into_rtrancl)
+  apply assumption
+  done
+
+(*r^+ contains r*)
+lemma r_into_trancl: "[| <a,b> : r |] ==> <a,b> : r^+"
+  unfolding trancl_def by (blast intro: rtrancl_refl)
+
+(*intro rule by definition: from rtrancl and r*)
+lemma rtrancl_into_trancl1: "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+"
+  unfolding trancl_def by blast
+
+(*intro rule from r and rtrancl*)
+lemma rtrancl_into_trancl2: "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+"
+  apply (erule rtranclE)
+   apply (erule subst)
+   apply (erule r_into_trancl)
+  apply (rule trans_rtrancl [THEN transD, THEN rtrancl_into_trancl1])
+    apply (assumption | rule r_into_rtrancl)+
+  done
+
+(*elimination of r^+ -- NOT an induction rule*)
+lemma tranclE:
+  "[| <a,b> : r^+;
+      <a,b> : r ==> P;
+      !!y.[| <a,y> : r^+;  <y,b> : r |] ==> P
+   |] ==> P"
+  apply (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r)")
+   apply blast
+  apply (unfold trancl_def)
+  apply (erule compEpair)
+  apply (erule rtranclE)
+   apply blast
+  apply (blast intro!: rtrancl_into_trancl1)
+  done
+
+(*Transitivity of r^+.
+  Proved by unfolding since it uses transitivity of rtrancl. *)
+lemma trans_trancl: "trans(r^+)"
+  apply (unfold trancl_def)
+  apply (rule transI)
+  apply (erule compEpair)+
+  apply (erule rtrancl_into_rtrancl [THEN trans_rtrancl [THEN transD, THEN compI]])
+    apply assumption+
+  done
+
+lemma trancl_into_trancl2: "[| <a,b> : r;  <b,c> : r^+ |]   ==>  <a,c> : r^+"
+  apply (rule r_into_trancl [THEN trans_trancl [THEN transD]])
+   apply assumption+
+  done
 
 end