src/HOL/Library/Abstract_Rat.thy
changeset 44779 98d597c4193d
parent 42463 f270e3e18be5
child 44780 a13cdb1e9e08
--- a/src/HOL/Library/Abstract_Rat.thy	Wed Sep 07 11:36:39 2011 +0200
+++ b/src/HOL/Library/Abstract_Rat.thy	Wed Sep 07 16:37:50 2011 +0200
@@ -10,64 +10,58 @@
 
 type_synonym Num = "int \<times> int"
 
-abbreviation
-  Num0_syn :: Num ("0\<^sub>N")
-where "0\<^sub>N \<equiv> (0, 0)"
+abbreviation Num0_syn :: Num ("0\<^sub>N")
+  where "0\<^sub>N \<equiv> (0, 0)"
 
-abbreviation
-  Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N")
-where "i\<^sub>N \<equiv> (i, 1)"
+abbreviation Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N")
+  where "i\<^sub>N \<equiv> (i, 1)"
 
-definition
-  isnormNum :: "Num \<Rightarrow> bool"
-where
+definition isnormNum :: "Num \<Rightarrow> bool" where
   "isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> gcd a b = 1))"
 
-definition
-  normNum :: "Num \<Rightarrow> Num"
-where
-  "normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else 
-  (let g = gcd a b 
-   in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
+definition normNum :: "Num \<Rightarrow> Num" where
+  "normNum = (\<lambda>(a,b).
+    (if a=0 \<or> b = 0 then (0,0) else
+      (let g = gcd a b 
+       in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
 
-declare gcd_dvd1_int[presburger]
-declare gcd_dvd2_int[presburger]
+declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger]
+
 lemma normNum_isnormNum [simp]: "isnormNum (normNum x)"
 proof -
   have " \<exists> a b. x = (a,b)" by auto
   then obtain a b where x[simp]: "x = (a,b)" by blast
-  {assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)}  
+  { assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def) }
   moreover
-  {assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0" 
+  { assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0"
     let ?g = "gcd a b"
     let ?a' = "a div ?g"
     let ?b' = "b div ?g"
     let ?g' = "gcd ?a' ?b'"
-    from anz bnz have "?g \<noteq> 0" by simp  with gcd_ge_0_int[of a b] 
+    from anz bnz have "?g \<noteq> 0" by simp  with gcd_ge_0_int[of a b]
     have gpos: "?g > 0" by arith
-    have gdvd: "?g dvd a" "?g dvd b" by arith+ 
-    from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)]
-    anz bnz
-    have nz':"?a' \<noteq> 0" "?b' \<noteq> 0"
-      by - (rule notI, simp)+
-    from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith 
+    have gdvd: "?g dvd a" "?g dvd b" by arith+
+    from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] anz bnz
+    have nz':"?a' \<noteq> 0" "?b' \<noteq> 0" by - (rule notI, simp)+
+    from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith
     from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" .
     from bnz have "b < 0 \<or> b > 0" by arith
     moreover
-    {assume b: "b > 0"
-      from b have "?b' \<ge> 0" 
-        by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos])  
+    { assume b: "b > 0"
+      from b have "?b' \<ge> 0"
+        by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos])
       with nz' have b': "?b' > 0" by arith 
       from b b' anz bnz nz' gp1 have ?thesis 
-        by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
-    moreover {assume b: "b < 0"
-      {assume b': "?b' \<ge> 0" 
+        by (simp add: isnormNum_def normNum_def Let_def split_def)}
+    moreover {
+      assume b: "b < 0"
+      { assume b': "?b' \<ge> 0" 
         from gpos have th: "?g \<ge> 0" by arith
         from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)]
         have False using b by arith }
-      hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) 
+      hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric])
       from anz bnz nz' b b' gp1 have ?thesis 
-        by (simp add: isnormNum_def normNum_def Let_def split_def)}
+        by (simp add: isnormNum_def normNum_def Let_def split_def) }
     ultimately have ?thesis by blast
   }
   ultimately show ?thesis by blast
@@ -75,50 +69,42 @@
 
 text {* Arithmetic over Num *}
 
-definition
-  Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60)
-where
-  "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') 
+definition Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60) where
+  "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b')
     else if a'=0 \<or> b' = 0 then normNum(a,b) 
     else normNum(a*b' + b*a', b*b'))"
 
-definition
-  Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60)
-where
+definition Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60) where
   "Nmul = (\<lambda>(a,b) (a',b'). let g = gcd (a*a') (b*b') 
     in (a*a' div g, b*b' div g))"
 
-definition
-  Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
-where
-  "Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
+definition Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
+  where "Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
 
-definition
-  Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60)
-where
-  "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
+definition Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60)
+  where "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
 
-definition
-  Ninv :: "Num \<Rightarrow> Num" 
-where
-  "Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)"
+definition Ninv :: "Num \<Rightarrow> Num"
+  where "Ninv = (\<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a))"
 
-definition
-  Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60)
-where
-  "Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b"
+definition Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60)
+  where "Ndiv = (\<lambda>a b. a *\<^sub>N Ninv b)"
 
 lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)"
-  by(simp add: isnormNum_def Nneg_def split_def)
+  by (simp add: isnormNum_def Nneg_def split_def)
+
 lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)"
   by (simp add: Nadd_def split_def)
+
 lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)"
   by (simp add: Nsub_def split_def)
-lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y"
+
+lemma Nmul_normN[simp]:
+  assumes xn:"isnormNum x" and yn: "isnormNum y"
   shows "isnormNum (x *\<^sub>N y)"
-proof-
+proof -
   have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto
-  then obtain a b a' b' where ab: "x = (a,b)"  and ab': "y = (a',b')" by blast 
+  then obtain a b a' b' where ab: "x = (a,b)"  and ab': "y = (a',b')" by blast
   {assume "a = 0"
     hence ?thesis using xn ab ab'
       by (simp add: isnormNum_def Let_def Nmul_def split_def)}
@@ -146,38 +132,25 @@
 
 text {* Relations over Num *}
 
-definition
-  Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N")
-where
-  "Nlt0 = (\<lambda>(a,b). a < 0)"
+definition Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N")
+  where "Nlt0 = (\<lambda>(a,b). a < 0)"
 
-definition
-  Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N")
-where
-  "Nle0 = (\<lambda>(a,b). a \<le> 0)"
+definition Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N")
+  where "Nle0 = (\<lambda>(a,b). a \<le> 0)"
 
-definition
-  Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N")
-where
-  "Ngt0 = (\<lambda>(a,b). a > 0)"
+definition Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N")
+  where "Ngt0 = (\<lambda>(a,b). a > 0)"
 
-definition
-  Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N")
-where
-  "Nge0 = (\<lambda>(a,b). a \<ge> 0)"
+definition Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N")
+  where "Nge0 = (\<lambda>(a,b). a \<ge> 0)"
 
-definition
-  Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55)
-where
-  "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
+definition Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55)
+  where "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
 
-definition
-  Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55)
-where
-  "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
+definition Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool"  (infix "\<le>\<^sub>N" 55)
+  where "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
 
-definition
-  "INum = (\<lambda>(a,b). of_int a / of_int b)"
+definition "INum = (\<lambda>(a,b). of_int a / of_int b)"
 
 lemma INum_int [simp]: "INum (i\<^sub>N) = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)"
   by (simp_all add: INum_def)
@@ -189,9 +162,9 @@
   have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto
   then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast
   assume H: ?lhs 
-  {assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0"
+  { assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0"
     hence ?rhs using na nb H
-      by (simp add: INum_def split_def isnormNum_def split: split_if_asm)}
+      by (simp add: INum_def split_def isnormNum_def split: split_if_asm) }
   moreover
   { assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
     from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def)
@@ -217,9 +190,10 @@
 qed
 
 
-lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)"
+lemma isnormNum0[simp]:
+    "isnormNum x \<Longrightarrow> (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)"
   unfolding INum_int(2)[symmetric]
-  by (rule isnormNum_unique, simp_all)
+  by (rule isnormNum_unique) simp_all
 
 lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = 
     of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
@@ -241,25 +215,27 @@
   apply (frule of_int_div_aux [of d n, where ?'a = 'a])
   apply simp
   apply (simp add: dvd_eq_mod_eq_0)
-done
+  done
 
 
 lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})"
-proof-
+proof -
   have "\<exists> a b. x = (a,b)" by auto
-  then obtain a b where x[simp]: "x = (a,b)" by blast
-  {assume "a=0 \<or> b = 0" hence ?thesis
-      by (simp add: INum_def normNum_def split_def Let_def)}
+  then obtain a b where x: "x = (a,b)" by blast
+  { assume "a=0 \<or> b = 0" hence ?thesis
+      by (simp add: x INum_def normNum_def split_def Let_def)}
   moreover 
-  {assume a: "a\<noteq>0" and b: "b\<noteq>0"
+  { assume a: "a\<noteq>0" and b: "b\<noteq>0"
     let ?g = "gcd a b"
     from a b have g: "?g \<noteq> 0"by simp
     from of_int_div[OF g, where ?'a = 'a]
-    have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)}
+    have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) }
   ultimately show ?thesis by blast
 qed
 
-lemma INum_normNum_iff: "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
+lemma INum_normNum_iff:
+  "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \<longleftrightarrow> normNum x = normNum y"
+  (is "?lhs = ?rhs")
 proof -
   have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
     by (simp del: normNum)
@@ -268,139 +244,159 @@
 qed
 
 lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})"
-proof-
-let ?z = "0:: 'a"
-  have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
-  then obtain a b a' b' where x[simp]: "x = (a,b)" 
+proof -
+  let ?z = "0:: 'a"
+  have "\<exists>a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
+  then obtain a b a' b' where x: "x = (a,b)" 
     and y[simp]: "y = (a',b')" by blast
-  {assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis 
-      apply (cases "a=0",simp_all add: Nadd_def)
-      apply (cases "b= 0",simp_all add: INum_def)
-       apply (cases "a'= 0",simp_all)
-       apply (cases "b'= 0",simp_all)
+  { assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0"
+    hence ?thesis 
+      apply (cases "a=0", simp_all add: x Nadd_def)
+      apply (cases "b= 0", simp_all add: INum_def)
+       apply (cases "a'= 0", simp_all)
+       apply (cases "b'= 0", simp_all)
        done }
   moreover 
-  {assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" 
-    {assume z: "a * b' + b * a' = 0"
+  { assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" 
+    { assume z: "a * b' + b * a' = 0"
       hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp
-      hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z"  by (simp add:add_divide_distrib) 
-      hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp 
+      hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z"
+        by (simp add:add_divide_distrib) 
+      hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa'
+        by simp 
       from z aa' bb' have ?thesis 
-        by (simp add: th Nadd_def normNum_def INum_def split_def)}
-    moreover {assume z: "a * b' + b * a' \<noteq> 0"
+        by (simp add: x th Nadd_def normNum_def INum_def split_def) }
+    moreover {
+      assume z: "a * b' + b * a' \<noteq> 0"
       let ?g = "gcd (a * b' + b * a') (b*b')"
       have gz: "?g \<noteq> 0" using z by simp
       have ?thesis using aa' bb' z gz
-        of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]]  of_int_div[where ?'a = 'a,
-        OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]]
-        by (simp add: Nadd_def INum_def normNum_def Let_def add_divide_distrib)}
-    ultimately have ?thesis using aa' bb' 
-      by (simp add: Nadd_def INum_def normNum_def Let_def) }
+        of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]]
+        of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]]
+        by (simp add: x Nadd_def INum_def normNum_def Let_def add_divide_distrib)}
+    ultimately have ?thesis using aa' bb'
+      by (simp add: x Nadd_def INum_def normNum_def Let_def) }
   ultimately show ?thesis by blast
 qed
 
-lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero}) "
-proof-
+lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})"
+proof -
   let ?z = "0::'a"
-  have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
+  have "\<exists>a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
   then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast
-  {assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis 
-      apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def)
-      apply (cases "b=0",simp_all)
-      apply (cases "a'=0",simp_all) 
+  { assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0"
+    hence ?thesis 
+      apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def)
+      apply (cases "b=0", simp_all)
+      apply (cases "a'=0", simp_all) 
       done }
   moreover
-  {assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
+  { assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
     let ?g="gcd (a*a') (b*b')"
     have gz: "?g \<noteq> 0" using z by simp
-    from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] 
+    from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]]
       of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] 
-    have ?thesis by (simp add: Nmul_def x y Let_def INum_def)}
+    have ?thesis by (simp add: Nmul_def x y Let_def INum_def) }
   ultimately show ?thesis by blast
 qed
 
 lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
   by (simp add: Nneg_def split_def INum_def)
 
-lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})"
-by (simp add: Nsub_def split_def)
+lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})"
+  by (simp add: Nsub_def split_def)
 
 lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)"
   by (simp add: Ninv_def INum_def split_def)
 
-lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" by (simp add: Ndiv_def)
+lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})"
+  by (simp add: Ndiv_def)
 
-lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" 
-  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x "
-proof-
-  have " \<exists> a b. x = (a,b)" by simp
+lemma Nlt0_iff[simp]:
+  assumes nx: "isnormNum x" 
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x"
+proof -
+  have "\<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
   {assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) }
   moreover
-  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
+  { assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
     from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"]
-    have ?thesis by (simp add: Nlt0_def INum_def)}
+    have ?thesis by (simp add: Nlt0_def INum_def) }
   ultimately show ?thesis by blast
 qed
 
-lemma Nle0_iff[simp]:assumes nx: "isnormNum x" 
+lemma Nle0_iff[simp]:
+  assumes nx: "isnormNum x"
   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<le> 0) = 0\<ge>\<^sub>N x"
-proof-
-  have " \<exists> a b. x = (a,b)" by simp
+proof -
+  have "\<exists>a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
-  {assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) }
+  { assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) }
   moreover
-  {assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def)
+  { assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def)
     from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"]
     have ?thesis by (simp add: Nle0_def INum_def)}
   ultimately show ?thesis by blast
 qed
 
-lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x"
-proof-
-  have " \<exists> a b. x = (a,b)" by simp
+lemma Ngt0_iff[simp]:
+  assumes nx: "isnormNum x"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x"
+proof -
+  have "\<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
-  {assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) }
+  { assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) }
   moreover
-  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
+  { assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx
+      by (simp add: isnormNum_def)
     from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"]
-    have ?thesis by (simp add: Ngt0_def INum_def)}
-  ultimately show ?thesis by blast
-qed
-lemma Nge0_iff[simp]:assumes nx: "isnormNum x" 
-  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<ge> 0) = 0\<le>\<^sub>N x"
-proof-
-  have " \<exists> a b. x = (a,b)" by simp
-  then obtain a b where x[simp]:"x = (a,b)" by blast
-  {assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) }
-  moreover
-  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
-    from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
-    have ?thesis by (simp add: Nge0_def INum_def)}
+    have ?thesis by (simp add: Ngt0_def INum_def) }
   ultimately show ?thesis by blast
 qed
 
-lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
+lemma Nge0_iff[simp]:
+  assumes nx: "isnormNum x"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<ge> 0) = 0\<le>\<^sub>N x"
+proof -
+  have "\<exists> a b. x = (a,b)" by simp
+  then obtain a b where x[simp]:"x = (a,b)" by blast
+  { assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) }
+  moreover
+  { assume "a \<noteq> 0" hence b: "(of_int b::'a) > 0" using nx
+      by (simp add: isnormNum_def)
+    from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
+    have ?thesis by (simp add: Nge0_def INum_def) }
+  ultimately show ?thesis by blast
+qed
+
+lemma Nlt_iff[simp]:
+  assumes nx: "isnormNum x" and ny: "isnormNum y"
   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)"
-proof-
+proof -
   let ?z = "0::'a"
-  have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp
-  also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
+  have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)"
+    using nx ny by simp
+  also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))"
+    using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
   finally show ?thesis by (simp add: Nlt_def)
 qed
 
-lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
+lemma Nle_iff[simp]:
+  assumes nx: "isnormNum x" and ny: "isnormNum y"
   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\<le> INum y) = (x \<le>\<^sub>N y)"
-proof-
-  have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp
-  also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp
+proof -
+  have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))"
+    using nx ny by simp
+  also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))"
+    using Nle0_iff[OF Nsub_normN[OF ny]] by simp
   finally show ?thesis by (simp add: Nle_def)
 qed
 
 lemma Nadd_commute:
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N y = y +\<^sub>N x"
-proof-
+proof -
   have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
   have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp
   with isnormNum_unique[OF n] show ?thesis by simp
@@ -422,12 +418,11 @@
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx: "isnormNum x" 
   shows "normNum x = x"
-proof-
+proof -
   let ?a = "normNum x"
   have n: "isnormNum ?a" by simp
-  have th:"INum ?a = (INum x ::'a)" by simp
-  with isnormNum_unique[OF n nx]  
-  show ?thesis by simp
+  have th: "INum ?a = (INum x ::'a)" by simp
+  with isnormNum_unique[OF n nx] show ?thesis by simp
 qed
 
 lemma normNum_nilpotent[simp]:
@@ -445,7 +440,7 @@
 lemma Nadd_normNum1[simp]:
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "normNum x +\<^sub>N y = x +\<^sub>N y"
-proof-
+proof -
   have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
   have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp
   also have "\<dots> = INum (x +\<^sub>N y)" by simp
@@ -455,7 +450,7 @@
 lemma Nadd_normNum2[simp]:
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N normNum y = x +\<^sub>N y"
-proof-
+proof -
   have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
   have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp
   also have "\<dots> = INum (x +\<^sub>N y)" by simp
@@ -465,7 +460,7 @@
 lemma Nadd_assoc:
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
-proof-
+proof -
   have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp
   with isnormNum_unique[OF n] show ?thesis by simp
@@ -478,7 +473,7 @@
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z"
   shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
-proof-
+proof -
   from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" 
     by simp_all
   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp
@@ -488,13 +483,13 @@
 lemma Nsub0:
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)"
-proof-
-  { fix h :: 'a
-    from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] 
-    have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
-    also have "\<dots> = (INum x = (INum y :: 'a))" by simp
-    also have "\<dots> = (x = y)" using x y by simp
-    finally show ?thesis . }
+proof -
+  fix h :: 'a
+  from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] 
+  have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
+  also have "\<dots> = (INum x = (INum y :: 'a))" by simp
+  also have "\<dots> = (x = y)" using x y by simp
+  finally show ?thesis .
 qed
 
 lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N"
@@ -504,16 +499,18 @@
   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx:"isnormNum x" and ny: "isnormNum y"
   shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)"
-proof-
-  { fix h :: 'a
-    have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto
-    then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast
-    have n0: "isnormNum 0\<^sub>N" by simp
-    show ?thesis using nx ny 
-      apply (simp only: isnormNum_unique[where ?'a = 'a, OF  Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a])
-      by (simp add: INum_def split_def isnormNum_def split: split_if_asm)
-  }
+proof -
+  fix h :: 'a
+  have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto
+  then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast
+  have n0: "isnormNum 0\<^sub>N" by simp
+  show ?thesis using nx ny 
+    apply (simp only: isnormNum_unique[where ?'a = 'a, OF  Nmul_normN[OF nx ny] n0, symmetric]
+      Nmul[where ?'a = 'a])
+    apply (simp add: INum_def split_def isnormNum_def split: split_if_asm)
+    done
 qed
+
 lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c"
   by (simp add: Nneg_def split_def)