src/HOL/Bali/Evaln.thy
changeset 12925 99131847fb93
parent 12919 d6a0d168291e
child 12937 0c4fd7529467
--- a/src/HOL/Bali/Evaln.thy	Thu Feb 21 20:11:32 2002 +0100
+++ b/src/HOL/Bali/Evaln.thy	Fri Feb 22 11:26:44 2002 +0100
@@ -1,17 +1,19 @@
 (*  Title:      HOL/Bali/Evaln.thy
     ID:         $Id$
-    Author:     David von Oheimb
+    Author:     David von Oheimb and Norbert Schirmer
     License:    GPL (GNU GENERAL PUBLIC LICENSE)
 *)
 header {* Operational evaluation (big-step) semantics of Java expressions and 
           statements
 *}
 
-theory Evaln = Eval:
+theory Evaln = Eval + TypeSafe:
 
 text {*
-Variant of eval relation with counter for bounded recursive depth
-Evaln could completely replace Eval.
+Variant of eval relation with counter for bounded recursive depth.
+Evaln omits the technical accessibility tests @{term check_field_access}
+and @{term check_method_access}, since we proved the absence of errors for
+wellformed programs.
 *}
 
 consts
@@ -70,9 +72,9 @@
 
   LVar:	"G\<turnstile>Norm s \<midarrow>LVar vn=\<succ>lvar vn s\<midarrow>n\<rightarrow> Norm s"
 
-  FVar:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s2;
-	  (v,s2') = fvar C stat fn a' s2\<rbrakk> \<Longrightarrow>
-	  G\<turnstile>Norm s0 \<midarrow>{C,stat}e..fn=\<succ>v\<midarrow>n\<rightarrow> s2'"
+  FVar:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>Init statDeclC\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s2;
+	  (v,s2') = fvar statDeclC stat fn a' s2\<rbrakk> \<Longrightarrow>
+	  G\<turnstile>Norm s0 \<midarrow>{accC,statDeclC,stat}e..fn=\<succ>v\<midarrow>n\<rightarrow> s2'"
 
   AVar:	"\<lbrakk>G\<turnstile> Norm s0 \<midarrow>e1-\<succ>a\<midarrow>n\<rightarrow> s1 ; G\<turnstile>s1 \<midarrow>e2-\<succ>i\<midarrow>n\<rightarrow> s2; 
 	  (v,s2') = avar G i a s2\<rbrakk> \<Longrightarrow>
@@ -119,7 +121,8 @@
     D = invocation_declclass G mode (store s2) a' statT \<lparr>name=mn,parTs=pTs\<rparr>; 
     G\<turnstile>init_lvars G D \<lparr>name=mn,parTs=pTs\<rparr> mode a' vs s2
             \<midarrow>Methd D \<lparr>name=mn,parTs=pTs\<rparr>-\<succ>v\<midarrow>n\<rightarrow> s3\<rbrakk>
-   \<Longrightarrow> G\<turnstile>Norm s0 \<midarrow>{statT,mode}e\<cdot>mn({pTs}args)-\<succ>v\<midarrow>n\<rightarrow> (restore_lvars s2 s3)"
+   \<Longrightarrow> 
+    G\<turnstile>Norm s0 \<midarrow>{accC,statT,mode}e\<cdot>mn({pTs}args)-\<succ>v\<midarrow>n\<rightarrow> (restore_lvars s2 s3)"
 
   Methd:"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>body G D sig-\<succ>v\<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
 				G\<turnstile>Norm s0 \<midarrow>Methd D sig-\<succ>v\<midarrow>Suc n\<rightarrow> s1"
@@ -187,56 +190,6 @@
 monos
   if_def2
 
-lemma evaln_eval: "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws \<Longrightarrow> G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> ws"
-apply (simp (no_asm_simp) only: split_tupled_all)
-apply (erule evaln.induct)
-apply (rule eval.intros, (assumption+)?,(force split del: split_if)?)+
-done
-
-
-lemma Suc_le_D_lemma: "\<lbrakk>Suc n <= m'; (\<And>m. n <= m \<Longrightarrow> P (Suc m)) \<rbrakk> \<Longrightarrow> P m'"
-apply (frule Suc_le_D)
-apply fast
-done
-
-lemma evaln_nonstrict [rule_format (no_asm), elim]: 
-  "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws \<Longrightarrow> \<forall>m. n\<le>m \<longrightarrow> G\<turnstile>s \<midarrow>t\<succ>\<midarrow>m\<rightarrow> ws"
-apply (simp (no_asm_simp) only: split_tupled_all)
-apply (erule evaln.induct)
-apply (tactic {* ALLGOALS (EVERY'[strip_tac, TRY o etac (thm "Suc_le_D_lemma"),
-  REPEAT o smp_tac 1, 
-  resolve_tac (thms "evaln.intros") THEN_ALL_NEW TRY o atac]) *})
-(* 3 subgoals *)
-apply (auto split del: split_if)
-done
-
-lemmas evaln_nonstrict_Suc = evaln_nonstrict [OF _ le_refl [THEN le_SucI]]
-
-lemma evaln_max2: "\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2\<rbrakk> \<Longrightarrow> 
-             G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max n1 n2\<rightarrow> ws1 \<and> G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max n1 n2\<rightarrow> ws2"
-apply (fast intro: le_maxI1 le_maxI2)
-done
-
-lemma evaln_max3: 
-"\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2; G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>n3\<rightarrow> ws3\<rbrakk> \<Longrightarrow>
- G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws1 \<and>
- G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws2 \<and> 
- G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws3"
-apply (drule (1) evaln_max2, erule thin_rl)
-apply (fast intro!: le_maxI1 le_maxI2)
-done
-
-lemma eval_evaln: "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> ws \<Longrightarrow> (\<exists>n. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws)"
-apply (simp (no_asm_simp) only: split_tupled_all)
-apply (erule eval.induct)
-apply (tactic {* ALLGOALS 
-         (asm_full_simp_tac (HOL_basic_ss addsplits [split_if_asm])) *})
-apply (tactic {* ALLGOALS (EVERY'[
-   REPEAT o eresolve_tac [exE, conjE], rtac exI,
-                     TRY o datac (thm "evaln_max3") 2, REPEAT o etac conjE,
-  resolve_tac (thms "evaln.intros") THEN_ALL_NEW 
-  force_tac (HOL_cs, HOL_ss)]) *})
-done
 
 declare split_if     [split del] split_if_asm     [split del]
         option.split [split del] option.split_asm [split del]
@@ -268,9 +221,9 @@
 	"G\<turnstile>Norm s \<midarrow>In1l (New T[e])                \<succ>\<midarrow>n\<rightarrow> vs'"
 	"G\<turnstile>Norm s \<midarrow>In1l (Ass va e)                \<succ>\<midarrow>n\<rightarrow> vs'"
 	"G\<turnstile>Norm s \<midarrow>In1r (Try c1 Catch(tn vn) c2)  \<succ>\<midarrow>n\<rightarrow> xs'"
-	"G\<turnstile>Norm s \<midarrow>In2  ({C,stat}e..fn)           \<succ>\<midarrow>n\<rightarrow> vs'"
+	"G\<turnstile>Norm s \<midarrow>In2  ({accC,statDeclC,stat}e..fn) \<succ>\<midarrow>n\<rightarrow> vs'"
 	"G\<turnstile>Norm s \<midarrow>In2  (e1.[e2])                 \<succ>\<midarrow>n\<rightarrow> vs'"
-	"G\<turnstile>Norm s \<midarrow>In1l ({statT,mode}e\<cdot>mn({pT}p)) \<succ>\<midarrow>n\<rightarrow> vs'"
+	"G\<turnstile>Norm s \<midarrow>In1l ({accC,statT,mode}e\<cdot>mn({pT}p)) \<succ>\<midarrow>n\<rightarrow> vs'"
 	"G\<turnstile>Norm s \<midarrow>In1r (Init C)                  \<succ>\<midarrow>n\<rightarrow> xs'"
 declare split_if     [split] split_if_asm     [split] 
         option.split [split] option.split_asm [split]
@@ -370,4 +323,1401 @@
 apply auto
 done
 
+lemma evaln_eval:  
+ (assumes evaln: "G\<turnstile>s0 \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (v,s1)" and
+             wt: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>t\<Colon>T" and  
+        conf_s0: "s0\<Colon>\<preceq>(G, L)" and
+             wf: "wf_prog G" 
+       
+ )  "G\<turnstile>s0 \<midarrow>t\<succ>\<rightarrow> (v,s1)"
+proof -
+  from evaln 
+  show "\<And> L accC T. \<lbrakk>s0\<Colon>\<preceq>(G, L);\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>t\<Colon>T\<rbrakk>
+                    \<Longrightarrow> G\<turnstile>s0 \<midarrow>t\<succ>\<rightarrow> (v,s1)"
+       (is "PROP ?EqEval s0 s1 t v")
+  proof (induct)
+    case Abrupt
+    show ?case by (rule eval.Abrupt)
+  next
+    case LVar
+    show ?case by (rule eval.LVar)
+  next
+    case (FVar a accC' e fn n s0 s1 s2 s2' stat statDeclC v L accC T)
+    have eval_initn: "G\<turnstile>Norm s0 \<midarrow>Init statDeclC\<midarrow>n\<rightarrow> s1" .
+    have eval_en: "G\<turnstile>s1 \<midarrow>e-\<succ>a\<midarrow>n\<rightarrow> s2" .
+    have hyp_init: "PROP ?EqEval (Norm s0) s1 (In1r (Init statDeclC)) \<diamondsuit>" .
+    have hyp_e: "PROP ?EqEval s1 s2 (In1l e) (In1 a)" .
+    have fvar: "(v, s2') = fvar statDeclC stat fn a s2" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have wt: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>In2 ({accC',statDeclC,stat}e..fn)\<Colon>T" .
+    then obtain statC f where
+                wt_e: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>e\<Colon>-Class statC" and
+            accfield: "accfield G accC statC fn = Some (statDeclC,f)" and
+                stat: "stat=is_static f" and
+               accC': "accC'=accC" and
+	           T: "T=(Inl (type f))"
+       by (rule wt_elim_cases) (auto simp add: member_is_static_simp)
+    from wf wt_e 
+    have iscls_statC: "is_class G statC"
+      by (auto dest: ty_expr_is_type type_is_class)
+    with wf accfield 
+    have iscls_statDeclC: "is_class G statDeclC"
+      by (auto dest!: accfield_fields dest: fields_declC)
+    then 
+    have wt_init: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>(Init statDeclC)\<Colon>\<surd>"
+      by simp
+    from conf_s0 wt_init
+    have eval_init: "G\<turnstile>Norm s0 \<midarrow>Init statDeclC\<rightarrow> s1"
+      by (rule hyp_init)
+    with wt_init conf_s0 wf 
+    have conf_s1: "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: exec_ts)
+    with hyp_e wt_e
+    have eval_e: "G\<turnstile>s1 \<midarrow>e-\<succ>a\<rightarrow> s2"
+      by blast
+    with wf conf_s1 wt_e
+    obtain conf_s2: "s2\<Colon>\<preceq>(G, L)" and
+            conf_a: "normal s2 \<longrightarrow> G,store s2\<turnstile>a\<Colon>\<preceq>Class statC"
+      by (auto dest!: eval_type_sound)
+    obtain s3 where
+      check: "s3 = check_field_access G accC statDeclC fn stat a s2'"
+      by simp
+    from accfield wt_e eval_init eval_e conf_s2 conf_a fvar stat check  wf
+    have eq_s3_s2': "s3=s2'"  
+      by (auto dest!: error_free_field_access)
+    with eval_init eval_e fvar check accC'
+    show "G\<turnstile>Norm s0 \<midarrow>{accC',statDeclC,stat}e..fn=\<succ>v\<rightarrow> s2'"
+      by (auto intro: eval.FVar)
+  next
+    case AVar
+    with wf show ?case
+      apply -
+      apply (erule wt_elim_cases)
+      apply (blast intro!: eval.AVar dest: eval_type_sound)
+      done
+  next
+    case NewC
+    with wf show ?case
+      apply - 
+      apply (erule wt_elim_cases)
+      apply (blast intro!: eval.NewC dest: eval_type_sound is_acc_classD)
+      done
+  next
+    case (NewA T a e i n s0 s1 s2 s3 L accC Ta) 
+    have hyp_init: "PROP ?EqEval (Norm s0) s1 (In1r (init_comp_ty T)) \<diamondsuit>" .
+    have hyp_size: "PROP ?EqEval s1 s2 (In1l e) (In1 i)" .
+    have "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1l (New T[e])\<Colon>Ta" .
+    then obtain
+       wt_init: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>init_comp_ty T\<Colon>\<surd>" and
+       wt_size: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e\<Colon>-PrimT Integer"
+      by (rule wt_elim_cases) (auto intro: wt_init_comp_ty dest: is_acc_typeD)
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    from this wt_init 
+    have eval_init: "G\<turnstile>Norm s0 \<midarrow>init_comp_ty T\<rightarrow> s1"
+      by (rule hyp_init)
+    moreover
+    from eval_init wt_init wf conf_s0
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (auto dest: eval_type_sound)
+    from this wt_size 
+    have "G\<turnstile>s1 \<midarrow>e-\<succ>i\<rightarrow> s2"
+      by (rule hyp_size)
+    moreover note NewA
+    ultimately show ?case
+      by (blast intro!: eval.NewA)
+  next
+    case Cast
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Cast,auto dest: eval_type_sound)
+  next
+    case Inst
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Inst,auto dest: eval_type_sound)
+  next
+    case Lit
+    show ?case by (rule eval.Lit)
+  next
+    case Super
+    show ?case by (rule eval.Super)
+  next
+    case Acc
+    then show ?case
+      by - (erule wt_elim_cases, rule eval.Acc,auto dest: eval_type_sound)
+  next
+    case Ass
+    with wf show ?case
+      by - (erule wt_elim_cases, blast intro!: eval.Ass dest: eval_type_sound) 
+  next
+    case (Cond b e0 e1 e2 n s0 s1 s2 v L accC T)
+    have hyp_e0: "PROP ?EqEval (Norm s0) s1 (In1l e0) (In1 b)" .
+    have hyp_if: "PROP ?EqEval s1 s2 
+                              (In1l (if the_Bool b then e1 else e2)) (In1 v)" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1l (e0 ? e1 : e2)\<Colon>T" .
+    then obtain T1 T2 statT where
+       wt_e0: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e0\<Colon>-PrimT Boolean" and
+       wt_e1: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e1\<Colon>-T1" and
+       wt_e2: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e2\<Colon>-T2" and 
+       statT: "G\<turnstile>T1\<preceq>T2 \<and> statT = T2  \<or>  G\<turnstile>T2\<preceq>T1 \<and> statT =  T1" and
+       T    : "T=Inl statT"
+      by (rule wt_elim_cases) auto
+    from conf_s0 wt_e0
+    have eval_e0: "G\<turnstile>Norm s0 \<midarrow>e0-\<succ>b\<rightarrow> s1"
+      by (rule hyp_e0)
+    moreover
+    from eval_e0 conf_s0 wf wt_e0
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    with wt_e1 wt_e2 statT hyp_if
+    have "G\<turnstile>s1 \<midarrow>(if the_Bool b then e1 else e2)-\<succ>v\<rightarrow> s2"
+      by (cases "the_Bool b") auto
+    ultimately
+    show ?case
+      by (rule eval.Cond)
+  next
+    case (Call invDeclC a' accC' args e mn mode n pTs' s0 s1 s2 s4 statT 
+           v vs L accC T)
+    (* Repeats large parts of the type soundness proof. One should factor
+       out some lemmata about the relations and conformance of s2, s3 and s3'*)
+    have evaln_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s1" .
+    have evaln_args: "G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<midarrow>n\<rightarrow> s2" .
+    have invDeclC: "invDeclC 
+                      = invocation_declclass G mode (store s2) a' statT 
+                           \<lparr>name = mn, parTs = pTs'\<rparr>" .
+    let ?InitLvars 
+         = "init_lvars G invDeclC \<lparr>name = mn, parTs = pTs'\<rparr> mode a' vs s2"
+    obtain s3 s3' where 
+      init_lvars: "s3 = 
+             init_lvars G invDeclC \<lparr>name = mn, parTs = pTs'\<rparr> mode a' vs s2" and
+      check: "s3' =
+         check_method_access G accC' statT mode \<lparr>name = mn, parTs = pTs'\<rparr> a' s3"
+      by simp
+    have evaln_methd: 
+           "G\<turnstile>?InitLvars \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<midarrow>n\<rightarrow> s4" .
+    have     hyp_e: "PROP ?EqEval (Norm s0) s1 (In1l e) (In1 a')" .
+    have  hyp_args: "PROP ?EqEval s1 s2 (In3 args) (In3 vs)" .
+    have hyp_methd: "PROP ?EqEval ?InitLvars s4 
+                     (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>)) (In1 v)".
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>
+                    \<turnstile>In1l ({accC',statT,mode}e\<cdot>mn( {pTs'}args))\<Colon>T" .
+    from wt obtain pTs statDeclT statM where
+                 wt_e: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>e\<Colon>-RefT statT" and
+              wt_args: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>args\<Colon>\<doteq>pTs" and
+                statM: "max_spec G accC statT \<lparr>name=mn,parTs=pTs\<rparr> 
+                         = {((statDeclT,statM),pTs')}" and
+                 mode: "mode = invmode statM e" and
+                    T: "T =Inl (resTy statM)" and
+        eq_accC_accC': "accC=accC'"
+      by (rule wt_elim_cases) auto
+    from conf_s0 wt_e hyp_e
+    have eval_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<rightarrow> s1"
+      by blast
+    with wf conf_s0 wt_e
+    obtain conf_s1: "s1\<Colon>\<preceq>(G, L)" and
+           conf_a': "normal s1 \<Longrightarrow> G, store s1\<turnstile>a'\<Colon>\<preceq>RefT statT" 
+      by (auto dest!: eval_type_sound)
+    from conf_s1 wt_args hyp_args
+    have eval_args: "G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<rightarrow> s2"
+      by blast
+    with wt_args conf_s1 wf 
+    obtain    conf_s2: "s2\<Colon>\<preceq>(G, L)" and
+            conf_args: "normal s2 
+                         \<Longrightarrow>  list_all2 (conf G (store s2)) vs pTs" 
+      by (auto dest!: eval_type_sound)
+    from statM 
+    obtain
+       statM': "(statDeclT,statM)\<in>mheads G accC statT \<lparr>name=mn,parTs=pTs'\<rparr>" and
+       pTs_widen: "G\<turnstile>pTs[\<preceq>]pTs'"
+      by (blast dest: max_spec2mheads)
+    from check
+    have eq_store_s3'_s3: "store s3'=store s3"
+      by (cases s3) (simp add: check_method_access_def Let_def)
+    obtain invC
+      where invC: "invC = invocation_class mode (store s2) a' statT"
+      by simp
+    with init_lvars
+    have invC': "invC = (invocation_class mode (store s3) a' statT)"
+      by (cases s2,cases mode) (auto simp add: init_lvars_def2 )
+    show "G\<turnstile>Norm s0 \<midarrow>{accC',statT,mode}e\<cdot>mn( {pTs'}args)
+             -\<succ>v\<rightarrow> (set_lvars (locals (store s2))) s4"
+    proof (cases "normal s2")
+      case False
+      with init_lvars 
+      obtain keep_abrupt: "abrupt s3 = abrupt s2" and
+             "store s3 = store (init_lvars G invDeclC \<lparr>name = mn, parTs = pTs'\<rparr> 
+                                            mode a' vs s2)" 
+	by (auto simp add: init_lvars_def2)
+      moreover
+      from keep_abrupt False check
+      have eq_s3'_s3: "s3'=s3" 
+	by (auto simp add: check_method_access_def Let_def)
+      moreover
+      from eq_s3'_s3 False keep_abrupt evaln_methd init_lvars
+      obtain "s4=s3'"
+	 "In1 v=arbitrary3 (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>))"
+	by auto
+      moreover note False
+      ultimately have
+	"G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<rightarrow> s4"
+	by (auto)
+      from eval_e eval_args invDeclC init_lvars check this
+      show ?thesis
+	by (rule eval.Call)
+    next
+      case True
+      note normal_s2 = True
+      with eval_args
+      have normal_s1: "normal s1"
+	by (cases "normal s1") auto
+      with conf_a' eval_args 
+      have conf_a'_s2: "G, store s2\<turnstile>a'\<Colon>\<preceq>RefT statT"
+	by (auto dest: eval_gext intro: conf_gext)
+      show ?thesis
+      proof (cases "a'=Null \<longrightarrow> is_static statM")
+	case False
+	then obtain not_static: "\<not> is_static statM" and Null: "a'=Null" 
+	  by blast
+	with normal_s2 init_lvars mode
+	obtain np: "abrupt s3 = Some (Xcpt (Std NullPointer))" and
+                   "store s3 = store (init_lvars G invDeclC 
+                                       \<lparr>name = mn, parTs = pTs'\<rparr> mode a' vs s2)"
+	  by (auto simp add: init_lvars_def2)
+	moreover
+	from np check
+	have eq_s3'_s3: "s3'=s3" 
+	  by (auto simp add: check_method_access_def Let_def)
+	moreover
+	from eq_s3'_s3 np evaln_methd init_lvars
+	obtain "s4=s3'"
+	  "In1 v=arbitrary3 (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>))"
+	  by auto
+	moreover note np 
+	ultimately have
+	  "G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<rightarrow> s4"
+	  by (auto)
+	from eval_e eval_args invDeclC init_lvars check this
+	show ?thesis
+	  by (rule eval.Call)
+      next
+	case True
+	with mode have notNull: "mode = IntVir \<longrightarrow> a' \<noteq> Null"
+	  by (auto dest!: Null_staticD)
+	with conf_s2 conf_a'_s2 wf invC 
+	have dynT_prop: "G\<turnstile>mode\<rightarrow>invC\<preceq>statT"
+	  by (cases s2) (auto intro: DynT_propI)
+	with wt_e statM' invC mode wf 
+	obtain dynM where 
+           dynM: "dynlookup G statT invC  \<lparr>name=mn,parTs=pTs'\<rparr> = Some dynM" and
+           acc_dynM: "G \<turnstile>Methd  \<lparr>name=mn,parTs=pTs'\<rparr> dynM 
+                          in invC dyn_accessible_from accC"
+	  by (force dest!: call_access_ok)
+	with invC' check eq_accC_accC'
+	have eq_s3'_s3: "s3'=s3"
+	  by (auto simp add: check_method_access_def Let_def)
+	from dynT_prop wf wt_e statM' mode invC invDeclC dynM 
+	obtain 
+	   wf_dynM: "wf_mdecl G invDeclC (\<lparr>name=mn,parTs=pTs'\<rparr>,mthd dynM)" and
+	     dynM': "methd G invDeclC \<lparr>name=mn,parTs=pTs'\<rparr> = Some dynM" and
+           iscls_invDeclC: "is_class G invDeclC" and
+	        invDeclC': "invDeclC = declclass dynM" and
+	     invC_widen: "G\<turnstile>invC\<preceq>\<^sub>C invDeclC" and
+	   is_static_eq: "is_static dynM = is_static statM" and
+	   involved_classes_prop:
+             "(if invmode statM e = IntVir
+               then \<forall>statC. statT = ClassT statC \<longrightarrow> G\<turnstile>invC\<preceq>\<^sub>C statC
+               else ((\<exists>statC. statT = ClassT statC \<and> G\<turnstile>statC\<preceq>\<^sub>C invDeclC) \<or>
+                     (\<forall>statC. statT \<noteq> ClassT statC \<and> invDeclC = Object)) \<and>
+                      statDeclT = ClassT invDeclC)"
+	  by (auto dest: DynT_mheadsD)
+	obtain L' where 
+	   L':"L'=(\<lambda> k. 
+                 (case k of
+                    EName e
+                    \<Rightarrow> (case e of 
+                          VNam v 
+                          \<Rightarrow>(table_of (lcls (mbody (mthd dynM)))
+                             (pars (mthd dynM)[\<mapsto>]pTs')) v
+                        | Res \<Rightarrow> Some (resTy dynM))
+                  | This \<Rightarrow> if is_static statM 
+                            then None else Some (Class invDeclC)))"
+	  by simp
+	from wf_dynM [THEN wf_mdeclD1, THEN conjunct1] normal_s2 conf_s2 wt_e
+              wf eval_args conf_a' mode notNull wf_dynM involved_classes_prop
+	have conf_s3: "s3\<Colon>\<preceq>(G,L')"
+	   apply - 
+          (*FIXME confomrs_init_lvars should be 
+                adjusted to be more directy applicable *)
+	   apply (drule conforms_init_lvars [of G invDeclC 
+                  "\<lparr>name=mn,parTs=pTs'\<rparr>" dynM "store s2" vs pTs "abrupt s2" 
+                  L statT invC a' "(statDeclT,statM)" e])
+	     apply (rule wf)
+	     apply (rule conf_args,assumption)
+	     apply (simp add: pTs_widen)
+	     apply (cases s2,simp)
+	     apply (rule dynM')
+	     apply (force dest: ty_expr_is_type)
+	     apply (rule invC_widen)
+	     apply (force intro: conf_gext dest: eval_gext)
+	     apply simp
+	     apply simp
+	     apply (simp add: invC)
+	     apply (simp add: invDeclC)
+	     apply (force dest: wf_mdeclD1 is_acc_typeD)
+	     apply (cases s2, simp add: L' init_lvars
+	                      cong add: lname.case_cong ename.case_cong)
+	   done
+	from is_static_eq wf_dynM L'
+	obtain mthdT where
+	   "\<lparr>prg=G,cls=invDeclC,lcl=L'\<rparr>
+            \<turnstile>Body invDeclC (stmt (mbody (mthd dynM)))\<Colon>-mthdT" and
+	   mthdT_widen: "G\<turnstile>mthdT\<preceq>resTy dynM"
+	  by - (drule wf_mdecl_bodyD,
+                simp cong add: lname.case_cong ename.case_cong)
+	with dynM' iscls_invDeclC invDeclC'
+	have
+	   "\<lparr>prg=G,cls=invDeclC,lcl=L'\<rparr>
+            \<turnstile>(Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>)\<Colon>-mthdT"
+	  by (auto intro: wt.Methd)
+	with conf_s3 hyp_methd init_lvars eq_s3'_s3
+	have "G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<rightarrow> s4"
+	  by auto
+	from eval_e eval_args invDeclC init_lvars check this
+	show ?thesis
+	  by (rule eval.Call)
+      qed
+    qed
+  next
+    case Methd
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Methd, 
+            auto dest: eval_type_sound simp add: body_def2)
+  next
+    case Body
+    with wf show ?case
+       by - (erule wt_elim_cases, blast intro!: eval.Body dest: eval_type_sound)
+  next
+    case Nil
+    show ?case by (rule eval.Nil)
+  next
+    case Cons
+    with wf show ?case
+      by - (erule wt_elim_cases, blast intro!: eval.Cons dest: eval_type_sound)
+  next
+    case Skip
+    show ?case by (rule eval.Skip)
+  next
+    case Expr
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Expr,auto dest: eval_type_sound)
+  next
+    case Lab
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Lab,auto dest: eval_type_sound)
+  next
+    case Comp
+    with wf show ?case
+      by - (erule wt_elim_cases, blast intro!: eval.Comp dest: eval_type_sound)
+  next
+    case (If b c1 c2 e n s0 s1 s2 L accC T)
+    have hyp_e: "PROP ?EqEval (Norm s0) s1 (In1l e) (In1 b)" .
+    have hyp_then_else: 
+      "PROP ?EqEval s1 s2 (In1r (if the_Bool b then c1 else c2)) \<diamondsuit>" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1r (If(e) c1 Else c2)\<Colon>T" .
+    then obtain 
+              wt_e: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>e\<Colon>-PrimT Boolean" and
+      wt_then_else: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>(if the_Bool b then c1 else c2)\<Colon>\<surd>"
+      by (rule wt_elim_cases) (auto split add: split_if)
+    from conf_s0 wt_e
+    have eval_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<rightarrow> s1"
+      by (rule hyp_e)
+    moreover
+    from eval_e wt_e conf_s0 wf
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    from this wt_then_else
+    have "G\<turnstile>s1 \<midarrow>(if the_Bool b then c1 else c2)\<rightarrow> s2"
+      by (rule hyp_then_else)
+    ultimately
+    show ?case
+      by (rule eval.If)
+  next
+    case (Loop b c e l n s0 s1 s2 s3 L accC T)
+    have hyp_e: "PROP ?EqEval (Norm s0) s1 (In1l e) (In1 b)" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1r (l\<bullet> While(e) c)\<Colon>T" .
+    then obtain wt_e: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e\<Colon>-PrimT Boolean" and
+                wt_c: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>c\<Colon>\<surd>"
+      by (rule wt_elim_cases) (blast)
+    from conf_s0 wt_e 
+    have eval_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<rightarrow> s1"
+      by (rule hyp_e)
+    moreover
+    from eval_e wt_e conf_s0 wf
+    have conf_s1: "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    have "if normal s1 \<and> the_Bool b 
+             then (G\<turnstile>s1 \<midarrow>c\<rightarrow> s2 \<and> 
+                   G\<turnstile>(abupd (absorb (Cont l)) s2) \<midarrow>l\<bullet> While(e) c\<rightarrow> s3)
+	     else s3 = s1"
+    proof (cases "normal s1 \<and> the_Bool b")
+      case True 
+      from Loop True have hyp_c: "PROP ?EqEval s1 s2 (In1r c) \<diamondsuit>"
+	by (auto)
+      from Loop True have hyp_w: "PROP ?EqEval (abupd (absorb (Cont l)) s2)
+                                        s3 (In1r (l\<bullet> While(e) c)) \<diamondsuit>"
+	by (auto)
+      from conf_s1 wt_c
+      have eval_c: "G\<turnstile>s1 \<midarrow>c\<rightarrow> s2"
+	by (rule hyp_c)
+      moreover
+      from eval_c conf_s1 wt_c wf
+      have "s2\<Colon>\<preceq>(G, L)"
+	by (blast dest: eval_type_sound)
+      then
+      have "abupd (absorb (Cont l)) s2 \<Colon>\<preceq>(G, L)"
+	by (cases s2) (auto intro: conforms_absorb)
+      from this and wt
+      have "G\<turnstile>abupd (absorb (Cont l)) s2 \<midarrow>l\<bullet> While(e) c\<rightarrow> s3"
+	by (rule hyp_w)
+      moreover note True
+      ultimately
+      show ?thesis
+	by simp
+    next
+      case False
+      with Loop have "s3 = s1" by simp
+      with False
+      show ?thesis 
+	by auto
+    qed
+    ultimately
+    show ?case
+      by (rule eval.Loop)
+  next
+    case Do
+    show ?case by (rule eval.Do)
+  next
+    case Throw
+    with wf show ?case
+      by - (erule wt_elim_cases, rule eval.Throw,auto dest: eval_type_sound)
+  next
+    case (Try c1 c2 n s0 s1 s2 s3 catchC vn L accC T)
+    have  hyp_c1: "PROP ?EqEval (Norm s0) s1 (In1r c1) \<diamondsuit>" .
+    have conf_s0:"Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt:"\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>In1r (Try c1 Catch(catchC vn) c2)\<Colon>T" .
+    then obtain 
+      wt_c1: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>c1\<Colon>\<surd>" and
+      wt_c2: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<lparr>lcl := L(VName vn\<mapsto>Class catchC)\<rparr>\<turnstile>c2\<Colon>\<surd>"
+      by (rule wt_elim_cases) (auto)
+    from conf_s0 wt_c1
+    have eval_c1: "G\<turnstile>Norm s0 \<midarrow>c1\<rightarrow> s1"
+      by (rule hyp_c1)
+    moreover
+    have sxalloc: "G\<turnstile>s1 \<midarrow>sxalloc\<rightarrow> s2" .
+    moreover
+    from eval_c1 wt_c1 conf_s0 wf
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    with sxalloc wf
+    have conf_s2: "s2\<Colon>\<preceq>(G, L)" 
+      by (auto dest: sxalloc_type_sound split: option.splits)
+    have "if G,s2\<turnstile>catch catchC then G\<turnstile>new_xcpt_var vn s2 \<midarrow>c2\<rightarrow> s3 else s3 = s2"
+    proof (cases "G,s2\<turnstile>catch catchC")
+      case True
+      note Catch = this
+      with Try have hyp_c2: "PROP ?EqEval (new_xcpt_var vn s2) s3 (In1r c2) \<diamondsuit>"
+	by auto
+      show ?thesis
+      proof (cases "normal s1")
+	case True
+	with sxalloc wf 
+	have eq_s2_s1: "s2=s1"
+	  by (auto dest: sxalloc_type_sound split: option.splits)
+	with True 
+	have "\<not>  G,s2\<turnstile>catch catchC"
+	  by (simp add: catch_def)
+	with Catch show ?thesis 
+	  by (contradiction)
+      next 
+	case False
+	with sxalloc wf
+	obtain a 
+	  where xcpt_s2: "abrupt s2 = Some (Xcpt (Loc a))"
+	  by (auto dest!: sxalloc_type_sound split: option.splits)
+	with Catch
+	have "G\<turnstile>obj_ty (the (globs (store s2) (Heap a)))\<preceq>Class catchC"
+	  by (cases s2) simp
+	with xcpt_s2 conf_s2 wf 
+	have "new_xcpt_var vn s2\<Colon>\<preceq>(G, L(VName vn\<mapsto>Class catchC))"
+	  by (auto dest: Try_lemma)
+	from this wt_c2
+	have "G\<turnstile>new_xcpt_var vn s2 \<midarrow>c2\<rightarrow> s3"
+	  by (auto intro: hyp_c2)
+	with Catch 
+	show ?thesis
+	  by simp
+      qed
+    next
+      case False
+      with Try
+      have "s3=s2"
+	by simp
+      with False
+      show ?thesis
+	by simp
+    qed
+    ultimately
+    show ?case
+      by (rule eval.Try)
+  next
+    case Fin
+    with wf show ?case
+      by -(erule wt_elim_cases, blast intro!: eval.Fin
+           dest: eval_type_sound intro: conforms_NormI)
+  next
+    case (Init C c n s0 s1 s2 s3 L accC T)
+    have     cls: "the (class G C) = c" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1r (Init C)\<Colon>T" .
+    with cls
+    have cls_C: "class G C = Some c"
+      by - (erule wt_elim_cases,auto)
+    have "if inited C (globs s0) then s3 = Norm s0
+	  else (G\<turnstile>Norm (init_class_obj G C s0) 
+		  \<midarrow>(if C = Object then Skip else Init (super c))\<rightarrow> s1 \<and>
+	       G\<turnstile>set_lvars empty s1 \<midarrow>init c\<rightarrow> s2 \<and> s3 = restore_lvars s1 s2)"
+    proof (cases "inited C (globs s0)")
+      case True
+      with Init have "s3 = Norm s0"
+	by simp
+      with True show ?thesis 
+	by simp
+    next
+      case False
+      with Init
+      obtain 
+	hyp_init_super: 
+        "PROP ?EqEval (Norm ((init_class_obj G C) s0)) s1
+	               (In1r (if C = Object then Skip else Init (super c))) \<diamondsuit>"
+	and 
+        hyp_init_c:
+	   "PROP ?EqEval ((set_lvars empty) s1) s2 (In1r (init c)) \<diamondsuit>" and
+	s3: "s3 = (set_lvars (locals (store s1))) s2"
+	by (simp only: if_False)
+      from conf_s0 wf cls_C False
+      have conf_s0': "(Norm ((init_class_obj G C) s0))\<Colon>\<preceq>(G, L)"
+	by (auto dest: conforms_init_class_obj)
+      moreover
+      from wf cls_C 
+      have wt_init_super:
+           "\<lparr>prg = G, cls = accC, lcl = L\<rparr>
+                  \<turnstile>(if C = Object then Skip else Init (super c))\<Colon>\<surd>"
+	by (cases "C=Object")
+           (auto dest: wf_prog_cdecl wf_cdecl_supD is_acc_classD)
+      ultimately
+      have eval_init_super: 
+	   "G\<turnstile>Norm ((init_class_obj G C) s0) 
+            \<midarrow>(if C = Object then Skip else Init (super c))\<rightarrow> s1"
+	by (rule hyp_init_super)
+      with conf_s0' wt_init_super wf
+      have "s1\<Colon>\<preceq>(G, L)"
+	by (blast dest: eval_type_sound)
+      then
+      have "(set_lvars empty) s1\<Colon>\<preceq>(G, empty)"
+	by (cases s1) (auto dest: conforms_set_locals )
+      with wf cls_C 
+      have eval_init_c: "G\<turnstile>(set_lvars empty) s1 \<midarrow>init c\<rightarrow> s2"
+	by (auto intro!: hyp_init_c dest: wf_prog_cdecl wf_cdecl_wt_init)
+      from False eval_init_super eval_init_c s3
+      show ?thesis
+	by simp
+    qed
+    from cls this
+    show ?case
+      by (rule eval.Init)
+  qed 
+qed
+
+lemma Suc_le_D_lemma: "\<lbrakk>Suc n <= m'; (\<And>m. n <= m \<Longrightarrow> P (Suc m)) \<rbrakk> \<Longrightarrow> P m'"
+apply (frule Suc_le_D)
+apply fast
+done
+
+lemma evaln_nonstrict [rule_format (no_asm), elim]: 
+  "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws \<Longrightarrow> \<forall>m. n\<le>m \<longrightarrow> G\<turnstile>s \<midarrow>t\<succ>\<midarrow>m\<rightarrow> ws"
+apply (simp (no_asm_simp) only: split_tupled_all)
+apply (erule evaln.induct)
+apply (tactic {* ALLGOALS (EVERY'[strip_tac, TRY o etac (thm "Suc_le_D_lemma"),
+  REPEAT o smp_tac 1, 
+  resolve_tac (thms "evaln.intros") THEN_ALL_NEW TRY o atac]) *})
+(* 3 subgoals *)
+apply (auto split del: split_if)
+done
+
+lemmas evaln_nonstrict_Suc = evaln_nonstrict [OF _ le_refl [THEN le_SucI]]
+
+lemma evaln_max2: "\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2\<rbrakk> \<Longrightarrow> 
+             G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max n1 n2\<rightarrow> ws1 \<and> G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max n1 n2\<rightarrow> ws2"
+apply (fast intro: le_maxI1 le_maxI2)
+done
+
+lemma evaln_max3: 
+"\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2; G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>n3\<rightarrow> ws3\<rbrakk> \<Longrightarrow>
+ G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws1 \<and>
+ G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws2 \<and> 
+ G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws3"
+apply (drule (1) evaln_max2, erule thin_rl)
+apply (fast intro!: le_maxI1 le_maxI2)
+done
+
+lemma le_max3I1: "(n2::nat) \<le> max n1 (max n2 n3)"
+proof -
+  have "n2 \<le> max n2 n3"
+    by (rule le_maxI1)
+  also
+  have "max n2 n3 \<le> max n1 (max n2 n3)"
+    by (rule le_maxI2)
+  finally
+  show ?thesis .
+qed
+
+lemma le_max3I2: "(n3::nat) \<le> max n1 (max n2 n3)"
+proof -
+  have "n3 \<le> max n2 n3"
+    by (rule le_maxI2)
+  also
+  have "max n2 n3 \<le> max n1 (max n2 n3)"
+    by (rule le_maxI2)
+  finally
+  show ?thesis .
+qed
+
+
+lemma eval_evaln: 
+ (assumes eval: "G\<turnstile>s0 \<midarrow>t\<succ>\<rightarrow> (v,s1)" and
+          wt: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>t\<Colon>T" and  
+     conf_s0: "s0\<Colon>\<preceq>(G, L)" and
+          wf: "wf_prog G"  
+ )  "\<exists>n. G\<turnstile>s0 \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (v,s1)"
+proof -
+  from eval 
+  show "\<And> L accC T. \<lbrakk>s0\<Colon>\<preceq>(G, L);\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>t\<Colon>T\<rbrakk>
+                     \<Longrightarrow> \<exists> n. G\<turnstile>s0 \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (v,s1)"
+       (is "PROP ?EqEval s0 s1 t v")
+  proof (induct)
+    case (Abrupt s t xc L accC T)
+    obtain n where
+      "G\<turnstile>(Some xc, s) \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (arbitrary3 t, Some xc, s)"
+      by (rules intro: evaln.Abrupt)
+    then show ?case ..
+  next
+    case Skip
+    show ?case by (blast intro: evaln.Skip)
+  next
+    case (Expr e s0 s1 v L accC T)
+    then obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    then have "G\<turnstile>Norm s0 \<midarrow>Expr e\<midarrow>n\<rightarrow> s1"
+      by (rule evaln.Expr) 
+    then show ?case ..
+  next
+    case (Lab c l s0 s1 L accC T)
+    then obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>c\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    then have "G\<turnstile>Norm s0 \<midarrow>l\<bullet> c\<midarrow>n\<rightarrow> abupd (absorb (Break l)) s1"
+      by (rule evaln.Lab)
+    then show ?case ..
+  next
+    case (Comp c1 c2 s0 s1 s2 L accC T)
+    with wf obtain n1 n2 where
+      "G\<turnstile>Norm s0 \<midarrow>c1\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>c2\<midarrow>n2\<rightarrow> s2"
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    then have "G\<turnstile>Norm s0 \<midarrow>c1;; c2\<midarrow>max n1 n2\<rightarrow> s2"
+      by (blast intro: evaln.Comp dest: evaln_max2 )
+    then show ?case ..
+  next
+    case (If b c1 c2 e s0 s1 s2 L accC T)
+    with wf obtain
+      "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e\<Colon>-PrimT Boolean"
+      "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>(if the_Bool b then c1 else c2)\<Colon>\<surd>"
+      by (cases "the_Bool b") (auto elim!: wt_elim_cases)
+    with If wf obtain n1 n2 where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>(if the_Bool b then c1 else c2)\<midarrow>n2\<rightarrow> s2"
+      by (blast dest: eval_type_sound)
+    then have "G\<turnstile>Norm s0 \<midarrow>If(e) c1 Else c2\<midarrow>max n1 n2\<rightarrow> s2"
+      by (blast intro: evaln.If dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Loop b c e l s0 s1 s2 s3 L accC T)
+    have eval_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<rightarrow> s1" .
+    have hyp_e: "PROP ?EqEval (Norm s0) s1 (In1l e) (In1 b)" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1r (l\<bullet> While(e) c)\<Colon>T" .
+    then obtain wt_e: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e\<Colon>-PrimT Boolean" and
+                wt_c: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>c\<Colon>\<surd>"
+      by (rule wt_elim_cases) (blast)
+    from conf_s0 wt_e 
+    obtain n1 where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<midarrow>n1\<rightarrow> s1"
+      by (rules dest: hyp_e)
+    moreover
+    from eval_e wt_e conf_s0 wf
+    have conf_s1: "s1\<Colon>\<preceq>(G, L)"
+      by (rules dest: eval_type_sound)
+    obtain n2 where
+      "if normal s1 \<and> the_Bool b 
+             then (G\<turnstile>s1 \<midarrow>c\<midarrow>n2\<rightarrow> s2 \<and> 
+                   G\<turnstile>(abupd (absorb (Cont l)) s2)\<midarrow>l\<bullet> While(e) c\<midarrow>n2\<rightarrow> s3)
+	     else s3 = s1"
+    proof (cases "normal s1 \<and> the_Bool b")
+      case True
+      from Loop True have hyp_c: "PROP ?EqEval s1 s2 (In1r c) \<diamondsuit>"
+	by (auto)
+      from Loop True have hyp_w: "PROP ?EqEval (abupd (absorb (Cont l)) s2)
+                                        s3 (In1r (l\<bullet> While(e) c)) \<diamondsuit>"
+	by (auto)
+      from Loop True have eval_c: "G\<turnstile>s1 \<midarrow>c\<rightarrow> s2"
+	by simp
+      from conf_s1 wt_c
+      obtain m1 where 
+	evaln_c: "G\<turnstile>s1 \<midarrow>c\<midarrow>m1\<rightarrow> s2"
+	by (rules dest: hyp_c)
+      moreover
+      from eval_c conf_s1 wt_c wf
+      have "s2\<Colon>\<preceq>(G, L)"
+	by (rules dest: eval_type_sound)
+      then
+      have "abupd (absorb (Cont l)) s2 \<Colon>\<preceq>(G, L)"
+	by (cases s2) (auto intro: conforms_absorb)
+      from this and wt
+      obtain m2 where 
+	"G\<turnstile>abupd (absorb (Cont l)) s2 \<midarrow>l\<bullet> While(e) c\<midarrow>m2\<rightarrow> s3"
+	by (blast dest: hyp_w)
+      moreover note True and that
+      ultimately show ?thesis
+	by simp (rules intro: evaln_nonstrict le_maxI1 le_maxI2)
+    next
+      case False
+      with Loop have "s3 = s1"
+	by simp
+      with False that
+      show ?thesis
+	by auto 
+    qed
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>l\<bullet> While(e) c\<midarrow>max n1 n2\<rightarrow> s3"
+      apply -
+      apply (rule evaln.Loop)
+      apply   (rules intro: evaln_nonstrict intro: le_maxI1)
+
+      apply   (auto intro: evaln_nonstrict intro: le_maxI2)
+      done
+    then show ?case ..
+  next
+    case (Do j s L accC T)
+    have "G\<turnstile>Norm s \<midarrow>Do j\<midarrow>n\<rightarrow> (Some (Jump j), s)"
+      by (rule evaln.Do)
+    then show ?case ..
+  next
+    case (Throw a e s0 s1 L accC T)
+    then obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>a\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    then have "G\<turnstile>Norm s0 \<midarrow>Throw e\<midarrow>n\<rightarrow> abupd (throw a) s1"
+      by (rule evaln.Throw)
+    then show ?case ..
+  next 
+    case (Try catchC c1 c2 s0 s1 s2 s3 vn L accC T)
+    have  hyp_c1: "PROP ?EqEval (Norm s0) s1 (In1r c1) \<diamondsuit>" .
+    have eval_c1: "G\<turnstile>Norm s0 \<midarrow>c1\<rightarrow> s1" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>In1r (Try c1 Catch(catchC vn) c2)\<Colon>T" .
+    then obtain 
+      wt_c1: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>c1\<Colon>\<surd>" and
+      wt_c2: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<lparr>lcl := L(VName vn\<mapsto>Class catchC)\<rparr>\<turnstile>c2\<Colon>\<surd>"
+      by (rule wt_elim_cases) (auto)
+    from conf_s0 wt_c1
+    obtain n1 where
+      "G\<turnstile>Norm s0 \<midarrow>c1\<midarrow>n1\<rightarrow> s1"
+      by (blast dest: hyp_c1)
+    moreover 
+    have sxalloc: "G\<turnstile>s1 \<midarrow>sxalloc\<rightarrow> s2" .
+    moreover
+    from eval_c1 wt_c1 conf_s0 wf
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    with sxalloc wf
+    have conf_s2: "s2\<Colon>\<preceq>(G, L)" 
+      by (auto dest: sxalloc_type_sound split: option.splits)
+    obtain n2 where
+      "if G,s2\<turnstile>catch catchC then G\<turnstile>new_xcpt_var vn s2 \<midarrow>c2\<midarrow>n2\<rightarrow> s3 else s3 = s2"
+    proof (cases "G,s2\<turnstile>catch catchC")
+      case True
+      note Catch = this
+      with Try have hyp_c2: "PROP ?EqEval (new_xcpt_var vn s2) s3 (In1r c2) \<diamondsuit>"
+	by auto
+      show ?thesis
+      proof (cases "normal s1")
+	case True
+	with sxalloc wf 
+	have eq_s2_s1: "s2=s1"
+	  by (auto dest: sxalloc_type_sound split: option.splits)
+	with True 
+	have "\<not>  G,s2\<turnstile>catch catchC"
+	  by (simp add: catch_def)
+	with Catch show ?thesis 
+	  by (contradiction)
+      next 
+	case False
+	with sxalloc wf
+	obtain a 
+	  where xcpt_s2: "abrupt s2 = Some (Xcpt (Loc a))"
+	  by (auto dest!: sxalloc_type_sound split: option.splits)
+	with Catch
+	have "G\<turnstile>obj_ty (the (globs (store s2) (Heap a)))\<preceq>Class catchC"
+	  by (cases s2) simp
+	with xcpt_s2 conf_s2 wf 
+	have "new_xcpt_var vn s2\<Colon>\<preceq>(G, L(VName vn\<mapsto>Class catchC))"
+	  by (auto dest: Try_lemma)
+	(* FIXME extract lemma for this conformance, also usefull for
+               eval_type_sound and evaln_eval *)
+	from this wt_c2
+	obtain m where "G\<turnstile>new_xcpt_var vn s2 \<midarrow>c2\<midarrow>m\<rightarrow> s3"
+	  by (auto dest: hyp_c2)
+	with True that
+	show ?thesis
+	  by simp
+      qed
+    next
+      case False
+      with Try
+      have "s3=s2"
+	by simp
+      with False and that
+      show ?thesis
+	by simp
+    qed
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>Try c1 Catch(catchC vn) c2\<midarrow>max n1 n2\<rightarrow> s3"
+      by (auto intro!: evaln.Try le_maxI1 le_maxI2)
+    then show ?case ..
+  next
+    case (Fin c1 c2 s0 s1 s2 x1 L accC T)
+    with wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>c1\<midarrow>n1\<rightarrow> (x1, s1)"
+      "G\<turnstile>Norm s1 \<midarrow>c2\<midarrow>n2\<rightarrow> s2"
+      by (blast elim!: wt_elim_cases 
+	         dest: eval_type_sound intro: conforms_NormI)
+    then have 
+     "G\<turnstile>Norm s0 \<midarrow>c1 Finally c2\<midarrow>max n1 n2\<rightarrow> abupd (abrupt_if (x1 \<noteq> None) x1) s2"
+      by (blast intro: evaln.Fin dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Init C c s0 s1 s2 s3 L accC T)
+    have     cls: "the (class G C) = c" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1r (Init C)\<Colon>T" .
+    with cls
+    have cls_C: "class G C = Some c"
+      by - (erule wt_elim_cases,auto)
+    obtain n where
+      "if inited C (globs s0) then s3 = Norm s0
+       else (G\<turnstile>Norm (init_class_obj G C s0)
+	      \<midarrow>(if C = Object then Skip else Init (super c))\<midarrow>n\<rightarrow> s1 \<and>
+	           G\<turnstile>set_lvars empty s1 \<midarrow>init c\<midarrow>n\<rightarrow> s2 \<and> 
+                   s3 = restore_lvars s1 s2)"
+    proof (cases "inited C (globs s0)")
+      case True
+      with Init have "s3 = Norm s0"
+	by simp
+      with True that show ?thesis 
+	by simp
+    next
+      case False
+      with Init
+      obtain 
+	hyp_init_super: 
+        "PROP ?EqEval (Norm ((init_class_obj G C) s0)) s1
+	               (In1r (if C = Object then Skip else Init (super c))) \<diamondsuit>"
+	and 
+        hyp_init_c:
+	   "PROP ?EqEval ((set_lvars empty) s1) s2 (In1r (init c)) \<diamondsuit>" and
+	s3: "s3 = (set_lvars (locals (store s1))) s2" and
+	eval_init_super: 
+	"G\<turnstile>Norm ((init_class_obj G C) s0) 
+           \<midarrow>(if C = Object then Skip else Init (super c))\<rightarrow> s1"
+	by (simp only: if_False)
+      from conf_s0 wf cls_C False
+      have conf_s0': "(Norm ((init_class_obj G C) s0))\<Colon>\<preceq>(G, L)"
+	by (auto dest: conforms_init_class_obj)
+      moreover
+      from wf cls_C 
+      have wt_init_super:
+           "\<lparr>prg = G, cls = accC, lcl = L\<rparr>
+                  \<turnstile>(if C = Object then Skip else Init (super c))\<Colon>\<surd>"
+	by (cases "C=Object")
+           (auto dest: wf_prog_cdecl wf_cdecl_supD is_acc_classD)
+      ultimately
+      obtain m1 where  
+	   "G\<turnstile>Norm ((init_class_obj G C) s0) 
+            \<midarrow>(if C = Object then Skip else Init (super c))\<midarrow>m1\<rightarrow> s1"
+	by (rules dest: hyp_init_super)
+      moreover
+      from eval_init_super conf_s0' wt_init_super wf
+      have "s1\<Colon>\<preceq>(G, L)"
+	by (rules dest: eval_type_sound)
+      then
+      have "(set_lvars empty) s1\<Colon>\<preceq>(G, empty)"
+	by (cases s1) (auto dest: conforms_set_locals )
+      with wf cls_C 
+      obtain m2 where
+	"G\<turnstile>(set_lvars empty) s1 \<midarrow>init c\<midarrow>m2\<rightarrow> s2"
+	by (blast dest!: hyp_init_c 
+                   dest: wf_prog_cdecl intro!: wf_cdecl_wt_init)
+      moreover note s3 and False and that
+      ultimately show ?thesis
+	by simp (rules intro: evaln_nonstrict le_maxI1 le_maxI2)
+    qed
+    from cls this have "G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s3"
+      by (rule evaln.Init)
+    then show ?case ..
+  next
+    case (NewC C a s0 s1 s2 L accC T)
+    with wf obtain n where 
+     "G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s1"
+      by (blast elim!: wt_elim_cases dest: is_acc_classD)
+    with NewC 
+    have "G\<turnstile>Norm s0 \<midarrow>NewC C-\<succ>Addr a\<midarrow>n\<rightarrow> s2"
+      by (rules intro: evaln.NewC)
+    then show ?case ..
+  next
+    case (NewA T a e i s0 s1 s2 s3 L accC Ta)
+    hence "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>init_comp_ty T\<Colon>\<surd>" 
+      by (auto elim!: wt_elim_cases 
+              intro!: wt_init_comp_ty dest: is_acc_typeD)
+    with NewA wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>init_comp_ty T\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>e-\<succ>i\<midarrow>n2\<rightarrow> s2"      
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    moreover
+    have "G\<turnstile>abupd (check_neg i) s2 \<midarrow>halloc Arr T (the_Intg i)\<succ>a\<rightarrow> s3" .
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>New T[e]-\<succ>Addr a\<midarrow>max n1 n2\<rightarrow> s3"
+      by (blast intro: evaln.NewA dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Cast castT e s0 s1 s2 v L accC T)
+    with wf obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    moreover 
+    have "s2 = abupd (raise_if (\<not> G,snd s1\<turnstile>v fits castT) ClassCast) s1" .
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>Cast castT e-\<succ>v\<midarrow>n\<rightarrow> s2"
+      by (rule evaln.Cast)
+    then show ?case ..
+  next
+    case (Inst T b e s0 s1 v L accC T')
+    with wf obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    moreover 
+    have "b = (v \<noteq> Null \<and> G,snd s1\<turnstile>v fits RefT T)" .
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>e InstOf T-\<succ>Bool b\<midarrow>n\<rightarrow> s1"
+      by (rule evaln.Inst)
+    then show ?case ..
+  next
+    case (Lit s v L accC T)
+    have "G\<turnstile>Norm s \<midarrow>Lit v-\<succ>v\<midarrow>n\<rightarrow> Norm s"
+      by (rule evaln.Lit)
+    then show ?case ..
+  next
+    case (Super s L accC T)
+    have "G\<turnstile>Norm s \<midarrow>Super-\<succ>val_this s\<midarrow>n\<rightarrow> Norm s"
+      by (rule evaln.Super)
+    then show ?case ..
+  next
+    case (Acc f s0 s1 v va L accC T)
+    with wf obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>va=\<succ>(v, f)\<midarrow>n\<rightarrow> s1"
+      by (rules elim!: wt_elim_cases)
+    then
+    have "G\<turnstile>Norm s0 \<midarrow>Acc va-\<succ>v\<midarrow>n\<rightarrow> s1"
+      by (rule evaln.Acc)
+    then show ?case ..
+  next
+    case (Ass e f s0 s1 s2 v var w L accC T)
+    with wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>var=\<succ>(w, f)\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>e-\<succ>v\<midarrow>n2\<rightarrow> s2"      
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    then
+    have "G\<turnstile>Norm s0 \<midarrow>var:=e-\<succ>v\<midarrow>max n1 n2\<rightarrow> assign f v s2"
+      by (blast intro: evaln.Ass dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Cond b e0 e1 e2 s0 s1 s2 v L accC T)
+    have hyp_e0: "PROP ?EqEval (Norm s0) s1 (In1l e0) (In1 b)" .
+    have hyp_if: "PROP ?EqEval s1 s2 
+                              (In1l (if the_Bool b then e1 else e2)) (In1 v)" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have wt: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>In1l (e0 ? e1 : e2)\<Colon>T" .
+    then obtain T1 T2 statT where
+       wt_e0: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e0\<Colon>-PrimT Boolean" and
+       wt_e1: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e1\<Colon>-T1" and
+       wt_e2: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>e2\<Colon>-T2" and 
+       statT: "G\<turnstile>T1\<preceq>T2 \<and> statT = T2  \<or>  G\<turnstile>T2\<preceq>T1 \<and> statT =  T1" and
+       T    : "T=Inl statT"
+      by (rule wt_elim_cases) auto
+    have eval_e0: "G\<turnstile>Norm s0 \<midarrow>e0-\<succ>b\<rightarrow> s1" .
+    from conf_s0 wt_e0
+    obtain n1 where 
+      "G\<turnstile>Norm s0 \<midarrow>e0-\<succ>b\<midarrow>n1\<rightarrow> s1"
+      by (rules dest: hyp_e0)
+    moreover
+    from eval_e0 conf_s0 wf wt_e0
+    have "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    with wt_e1 wt_e2 statT hyp_if obtain n2 where
+      "G\<turnstile>s1 \<midarrow>(if the_Bool b then e1 else e2)-\<succ>v\<midarrow>n2\<rightarrow> s2"
+      by  (cases "the_Bool b") force+
+    ultimately
+    have "G\<turnstile>Norm s0 \<midarrow>e0 ? e1 : e2-\<succ>v\<midarrow>max n1 n2\<rightarrow> s2"
+      by (blast intro: evaln.Cond dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Call invDeclC a' accC' args e mn mode pTs' s0 s1 s2 s3 s3' s4 statT 
+      v vs L accC T)
+    (* Repeats large parts of the type soundness proof. One should factor
+       out some lemmata about the relations and conformance of s2, s3 and s3'*)
+    have eval_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<rightarrow> s1" .
+    have eval_args: "G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<rightarrow> s2" .
+    have invDeclC: "invDeclC 
+                      = invocation_declclass G mode (store s2) a' statT 
+                           \<lparr>name = mn, parTs = pTs'\<rparr>" .
+    have
+      init_lvars: "s3 = 
+             init_lvars G invDeclC \<lparr>name = mn, parTs = pTs'\<rparr> mode a' vs s2" .
+    have
+      check: "s3' =
+       check_method_access G accC' statT mode \<lparr>name = mn, parTs = pTs'\<rparr> a' s3" .
+    have eval_methd: 
+           "G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<rightarrow> s4" .
+    have     hyp_e: "PROP ?EqEval (Norm s0) s1 (In1l e) (In1 a')" .
+    have  hyp_args: "PROP ?EqEval s1 s2 (In3 args) (In3 vs)" .
+    have hyp_methd: "PROP ?EqEval s3' s4 
+                     (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>)) (In1 v)".
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have      wt: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>
+                    \<turnstile>In1l ({accC',statT,mode}e\<cdot>mn( {pTs'}args))\<Colon>T" .
+    from wt obtain pTs statDeclT statM where
+                 wt_e: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>e\<Colon>-RefT statT" and
+              wt_args: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>args\<Colon>\<doteq>pTs" and
+                statM: "max_spec G accC statT \<lparr>name=mn,parTs=pTs\<rparr> 
+                         = {((statDeclT,statM),pTs')}" and
+                 mode: "mode = invmode statM e" and
+                    T: "T =Inl (resTy statM)" and
+        eq_accC_accC': "accC=accC'"
+      by (rule wt_elim_cases) auto
+    from conf_s0 wt_e
+    obtain n1 where
+      evaln_e: "G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<midarrow>n1\<rightarrow> s1"
+      by (rules dest: hyp_e)
+    from wf eval_e conf_s0 wt_e
+    obtain conf_s1: "s1\<Colon>\<preceq>(G, L)" and
+           conf_a': "normal s1 \<Longrightarrow> G, store s1\<turnstile>a'\<Colon>\<preceq>RefT statT"  
+      by (auto dest!: eval_type_sound)
+    from conf_s1 wt_args
+    obtain n2 where
+      evaln_args: "G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<midarrow>n2\<rightarrow> s2"
+      by (blast dest: hyp_args)
+    from wt_args conf_s1 eval_args wf 
+    obtain    conf_s2: "s2\<Colon>\<preceq>(G, L)" and
+            conf_args: "normal s2 
+                         \<Longrightarrow>  list_all2 (conf G (store s2)) vs pTs"  
+      by (auto dest!: eval_type_sound)
+    from statM 
+    obtain
+       statM': "(statDeclT,statM)\<in>mheads G accC statT \<lparr>name=mn,parTs=pTs'\<rparr>" and
+       pTs_widen: "G\<turnstile>pTs[\<preceq>]pTs'"
+      by (blast dest: max_spec2mheads)
+    from check
+    have eq_store_s3'_s3: "store s3'=store s3"
+      by (cases s3) (simp add: check_method_access_def Let_def)
+    obtain invC
+      where invC: "invC = invocation_class mode (store s2) a' statT"
+      by simp
+    with init_lvars
+    have invC': "invC = (invocation_class mode (store s3) a' statT)"
+      by (cases s2,cases mode) (auto simp add: init_lvars_def2 )
+    obtain n3 where
+     "G\<turnstile>Norm s0 \<midarrow>{accC',statT,mode}e\<cdot>mn( {pTs'}args)-\<succ>v\<midarrow>n3\<rightarrow> 
+          (set_lvars (locals (store s2))) s4"
+    proof (cases "normal s2")
+      case False
+      with init_lvars 
+      obtain keep_abrupt: "abrupt s3 = abrupt s2" and
+             "store s3 = store (init_lvars G invDeclC \<lparr>name = mn, parTs = pTs'\<rparr> 
+                                            mode a' vs s2)" 
+	by (auto simp add: init_lvars_def2)
+      moreover
+      from keep_abrupt False check
+      have eq_s3'_s3: "s3'=s3" 
+	by (auto simp add: check_method_access_def Let_def)
+      moreover
+      from eq_s3'_s3 False keep_abrupt eval_methd init_lvars
+      obtain "s4=s3'"
+	 "In1 v=arbitrary3 (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>))"
+	by auto
+      moreover note False evaln.Abrupt
+      ultimately obtain m where 
+	"G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<midarrow>m\<rightarrow> s4"
+	by force
+      from evaln_e evaln_args invDeclC init_lvars eq_s3'_s3 this
+      have 
+       "G\<turnstile>Norm s0 \<midarrow>{accC',statT,mode}e\<cdot>mn( {pTs'}args)-\<succ>v\<midarrow>max n1 (max n2 m)\<rightarrow> 
+            (set_lvars (locals (store s2))) s4"
+	by (auto intro!: evaln.Call le_maxI1 le_max3I1 le_max3I2)
+      with that show ?thesis 
+	by rules
+    next
+      case True
+      note normal_s2 = True
+      with eval_args
+      have normal_s1: "normal s1"
+	by (cases "normal s1") auto
+      with conf_a' eval_args 
+      have conf_a'_s2: "G, store s2\<turnstile>a'\<Colon>\<preceq>RefT statT"
+	by (auto dest: eval_gext intro: conf_gext)
+      show ?thesis
+      proof (cases "a'=Null \<longrightarrow> is_static statM")
+	case False
+	then obtain not_static: "\<not> is_static statM" and Null: "a'=Null" 
+	  by blast
+	with normal_s2 init_lvars mode
+	obtain np: "abrupt s3 = Some (Xcpt (Std NullPointer))" and
+                   "store s3 = store (init_lvars G invDeclC 
+                                       \<lparr>name = mn, parTs = pTs'\<rparr> mode a' vs s2)"
+	  by (auto simp add: init_lvars_def2)
+	moreover
+	from np check
+	have eq_s3'_s3: "s3'=s3" 
+	  by (auto simp add: check_method_access_def Let_def)
+	moreover
+	from eq_s3'_s3 np eval_methd init_lvars
+	obtain "s4=s3'"
+	  "In1 v=arbitrary3 (In1l (Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>))"
+	  by auto
+	moreover note np
+	ultimately obtain m where 
+	  "G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<midarrow>m\<rightarrow> s4"
+	  by force
+	from evaln_e evaln_args invDeclC init_lvars eq_s3'_s3 this
+	have 
+        "G\<turnstile>Norm s0 \<midarrow>{accC',statT,mode}e\<cdot>mn( {pTs'}args)-\<succ>v\<midarrow>max n1 (max n2 m)\<rightarrow> 
+            (set_lvars (locals (store s2))) s4"
+	  by (auto intro!: evaln.Call le_maxI1 le_max3I1 le_max3I2)
+	with that show ?thesis 
+	  by rules
+      next
+	case True
+	with mode have notNull: "mode = IntVir \<longrightarrow> a' \<noteq> Null"
+	  by (auto dest!: Null_staticD)
+	with conf_s2 conf_a'_s2 wf invC 
+	have dynT_prop: "G\<turnstile>mode\<rightarrow>invC\<preceq>statT"
+	  by (cases s2) (auto intro: DynT_propI)
+	with wt_e statM' invC mode wf 
+	obtain dynM where 
+           dynM: "dynlookup G statT invC  \<lparr>name=mn,parTs=pTs'\<rparr> = Some dynM" and
+           acc_dynM: "G \<turnstile>Methd  \<lparr>name=mn,parTs=pTs'\<rparr> dynM 
+                          in invC dyn_accessible_from accC"
+	  by (force dest!: call_access_ok)
+	with invC' check eq_accC_accC'
+	have eq_s3'_s3: "s3'=s3"
+	  by (auto simp add: check_method_access_def Let_def)
+	from dynT_prop wf wt_e statM' mode invC invDeclC dynM 
+	obtain 
+	   wf_dynM: "wf_mdecl G invDeclC (\<lparr>name=mn,parTs=pTs'\<rparr>,mthd dynM)" and
+	     dynM': "methd G invDeclC \<lparr>name=mn,parTs=pTs'\<rparr> = Some dynM" and
+           iscls_invDeclC: "is_class G invDeclC" and
+	        invDeclC': "invDeclC = declclass dynM" and
+	     invC_widen: "G\<turnstile>invC\<preceq>\<^sub>C invDeclC" and
+	   is_static_eq: "is_static dynM = is_static statM" and
+	   involved_classes_prop:
+             "(if invmode statM e = IntVir
+               then \<forall>statC. statT = ClassT statC \<longrightarrow> G\<turnstile>invC\<preceq>\<^sub>C statC
+               else ((\<exists>statC. statT = ClassT statC \<and> G\<turnstile>statC\<preceq>\<^sub>C invDeclC) \<or>
+                     (\<forall>statC. statT \<noteq> ClassT statC \<and> invDeclC = Object)) \<and>
+                      statDeclT = ClassT invDeclC)"
+	  by (auto dest: DynT_mheadsD)
+	obtain L' where 
+	   L':"L'=(\<lambda> k. 
+                 (case k of
+                    EName e
+                    \<Rightarrow> (case e of 
+                          VNam v 
+                          \<Rightarrow>(table_of (lcls (mbody (mthd dynM)))
+                             (pars (mthd dynM)[\<mapsto>]pTs')) v
+                        | Res \<Rightarrow> Some (resTy dynM))
+                  | This \<Rightarrow> if is_static statM 
+                            then None else Some (Class invDeclC)))"
+	  by simp
+	from wf_dynM [THEN wf_mdeclD1, THEN conjunct1] normal_s2 conf_s2 wt_e
+              wf eval_args conf_a' mode notNull wf_dynM involved_classes_prop
+	have conf_s3: "s3\<Colon>\<preceq>(G,L')"
+	   apply - 
+          (*FIXME confomrs_init_lvars should be 
+                adjusted to be more directy applicable *)
+	   apply (drule conforms_init_lvars [of G invDeclC 
+                  "\<lparr>name=mn,parTs=pTs'\<rparr>" dynM "store s2" vs pTs "abrupt s2" 
+                  L statT invC a' "(statDeclT,statM)" e])
+	     apply (rule wf)
+	     apply (rule conf_args,assumption)
+	     apply (simp add: pTs_widen)
+	     apply (cases s2,simp)
+	     apply (rule dynM')
+	     apply (force dest: ty_expr_is_type)
+	     apply (rule invC_widen)
+	     apply (force intro: conf_gext dest: eval_gext)
+	     apply simp
+	     apply simp
+	     apply (simp add: invC)
+	     apply (simp add: invDeclC)
+	     apply (force dest: wf_mdeclD1 is_acc_typeD)
+	     apply (cases s2, simp add: L' init_lvars
+	                      cong add: lname.case_cong ename.case_cong)
+	   done
+	with is_static_eq wf_dynM L'
+	obtain mthdT where
+	   "\<lparr>prg=G,cls=invDeclC,lcl=L'\<rparr>
+            \<turnstile>Body invDeclC (stmt (mbody (mthd dynM)))\<Colon>-mthdT" 
+	  by - (drule wf_mdecl_bodyD,
+                simp cong add: lname.case_cong ename.case_cong)
+	with dynM' iscls_invDeclC invDeclC'
+	have
+	   "\<lparr>prg=G,cls=invDeclC,lcl=L'\<rparr>
+            \<turnstile>(Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>)\<Colon>-mthdT"
+	  by (auto intro: wt.Methd)
+	with conf_s3 eq_s3'_s3 hyp_methd
+	obtain m where
+	   "G\<turnstile>s3' \<midarrow>Methd invDeclC \<lparr>name = mn, parTs = pTs'\<rparr>-\<succ>v\<midarrow>m\<rightarrow> s4"
+	  by (blast)
+	from evaln_e evaln_args invDeclC init_lvars  eq_s3'_s3 this
+	have 
+        "G\<turnstile>Norm s0 \<midarrow>{accC',statT,mode}e\<cdot>mn( {pTs'}args)-\<succ>v\<midarrow>max n1 (max n2 m)\<rightarrow> 
+            (set_lvars (locals (store s2))) s4"
+	  by (auto intro!: evaln.Call le_maxI1 le_max3I1 le_max3I2)
+	with that show ?thesis 
+	  by rules
+      qed
+    qed
+    then show ?case ..
+  next
+    case (Methd D s0 s1 sig v L accC T)
+    then obtain n where
+      "G\<turnstile>Norm s0 \<midarrow>body G D sig-\<succ>v\<midarrow>n\<rightarrow> s1"
+      by - (erule wt_elim_cases, force simp add: body_def2)
+    then have "G\<turnstile>Norm s0 \<midarrow>Methd D sig-\<succ>v\<midarrow>Suc n\<rightarrow> s1"
+      by (rule evaln.Methd)
+    then show ?case ..
+  next
+    case (Body D c s0 s1 s2 L accC T)
+    with wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>Init D\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>c\<midarrow>n2\<rightarrow> s2"
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    then have 
+     "G\<turnstile>Norm s0 \<midarrow>Body D c-\<succ>the (locals (store s2) Result)\<midarrow>max n1 n2
+       \<rightarrow> abupd (absorb Ret) s2"
+      by (blast intro: evaln.Body dest: evaln_max2)
+    then show ?case ..
+  next
+    case (LVar s vn L accC T)
+    obtain n where
+      "G\<turnstile>Norm s \<midarrow>LVar vn=\<succ>lvar vn s\<midarrow>n\<rightarrow> Norm s"
+      by (rules intro: evaln.LVar)
+    then show ?case ..
+  next
+    case (FVar a accC e fn s0 s1 s2 s2' s3 stat statDeclC v L accC' T)
+    have eval_init: "G\<turnstile>Norm s0 \<midarrow>Init statDeclC\<rightarrow> s1" .
+    have eval_e: "G\<turnstile>s1 \<midarrow>e-\<succ>a\<rightarrow> s2" .
+    have check: "s3 = check_field_access G accC statDeclC fn stat a s2'" .
+    have hyp_init: "PROP ?EqEval (Norm s0) s1 (In1r (Init statDeclC)) \<diamondsuit>" .
+    have hyp_e: "PROP ?EqEval s1 s2 (In1l e) (In1 a)" .
+    have fvar: "(v, s2') = fvar statDeclC stat fn a s2" .
+    have conf_s0: "Norm s0\<Colon>\<preceq>(G, L)" .
+    have wt: "\<lparr>prg=G, cls=accC', lcl=L\<rparr>\<turnstile>In2 ({accC,statDeclC,stat}e..fn)\<Colon>T" .
+    then obtain statC f where
+                wt_e: "\<lparr>prg=G, cls=accC, lcl=L\<rparr>\<turnstile>e\<Colon>-Class statC" and
+            accfield: "accfield G accC statC fn = Some (statDeclC,f)" and
+                stat: "stat=is_static f" and
+               accC': "accC'=accC" and
+	           T: "T=(Inl (type f))"
+       by (rule wt_elim_cases) (auto simp add: member_is_static_simp)
+    from wf wt_e 
+    have iscls_statC: "is_class G statC"
+      by (auto dest: ty_expr_is_type type_is_class)
+    with wf accfield 
+    have iscls_statDeclC: "is_class G statDeclC"
+      by (auto dest!: accfield_fields dest: fields_declC)
+    then 
+    have wt_init: "\<lparr>prg = G, cls = accC, lcl = L\<rparr>\<turnstile>(Init statDeclC)\<Colon>\<surd>"
+      by simp
+    from conf_s0 wt_init
+    obtain n1 where
+      evaln_init: "G\<turnstile>Norm s0 \<midarrow>Init statDeclC\<midarrow>n1\<rightarrow> s1"
+      by (rules dest: hyp_init)
+    from eval_init wt_init conf_s0 wf 
+    have conf_s1: "s1\<Colon>\<preceq>(G, L)"
+      by (blast dest: eval_type_sound)
+    with wt_e
+    obtain n2 where
+      evaln_e: "G\<turnstile>s1 \<midarrow>e-\<succ>a\<midarrow>n2\<rightarrow> s2"
+      by (blast dest: hyp_e)
+    from eval_e wf conf_s1 wt_e
+    obtain conf_s2: "s2\<Colon>\<preceq>(G, L)" and
+            conf_a: "normal s2 \<longrightarrow> G,store s2\<turnstile>a\<Colon>\<preceq>Class statC"
+      by (auto dest!: eval_type_sound)
+    from accfield wt_e eval_init eval_e conf_s2 conf_a fvar stat check  wf
+    have eq_s3_s2': "s3=s2'"  
+      by (auto dest!: error_free_field_access)
+    with evaln_init evaln_e fvar accC'
+    have "G\<turnstile>Norm s0 \<midarrow>{accC,statDeclC,stat}e..fn=\<succ>v\<midarrow>max n1 n2\<rightarrow> s3"
+      by (auto intro: evaln.FVar dest: evaln_max2)
+    then show ?case ..
+  next
+    case (AVar a e1 e2 i s0 s1 s2 s2' v L accC T)
+    with wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>e1-\<succ>a\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>e2-\<succ>i\<midarrow>n2\<rightarrow> s2"      
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    moreover 
+    have "(v, s2') = avar G i a s2" .
+    ultimately 
+    have "G\<turnstile>Norm s0 \<midarrow>e1.[e2]=\<succ>v\<midarrow>max n1 n2\<rightarrow> s2'"
+      by (blast intro!: evaln.AVar dest: evaln_max2)
+    then show ?case ..
+  next
+    case (Nil s0 L accC T)
+    show ?case by (rules intro: evaln.Nil)
+  next
+    case (Cons e es s0 s1 s2 v vs L accC T)
+    with wf obtain n1 n2 where 
+      "G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n1\<rightarrow> s1"
+      "G\<turnstile>s1 \<midarrow>es\<doteq>\<succ>vs\<midarrow>n2\<rightarrow> s2"      
+      by (blast elim!: wt_elim_cases dest: eval_type_sound)
+    then
+    have "G\<turnstile>Norm s0 \<midarrow>e # es\<doteq>\<succ>v # vs\<midarrow>max n1 n2\<rightarrow> s2"
+      by (blast intro!: evaln.Cons dest: evaln_max2)
+    then show ?case ..
+  qed
+qed
+
 end